Skip to main content
Log in

High-Temperature Dry Sliding Wear Behavior of Al–12Si–CuNiMg Alloy and its Al2O3 Fiber-Reinforced Composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The high-temperature dry sliding wear behavior of an Al–12Si–CuNiMg alloy and its composite reinforced with Al2O3 fibers are investigated at 27 °C, 100 °C, 200 °C, and 300 °C. Wear tests are conducted under a constant sliding velocity of 1 m/s and various normal loads ranging from 2.5 to 10 N. To investigate the influence of temperature on the wear mechanisms, the worn surfaces of the matrix alloy and composite surfaces are carefully examined using scanning electron microscopy and energy dispersive spectroscopy. At 100–200 °C, the wear resistance of the composite increases, with the highest resistance recorded at 200 °C. The wear resistance decreases with the increase in the temperature from 200 to 300 °C. The wear resistance of the matrix alloy decreases as the temperature increases from 200 to 300 °C; however, it does not exhibit better wear resistance than the composite in the same temperature range. Furthermore, the friction coefficients of these two materials are discussed. The worn surface analysis performed at different temperatures indicates that the dominant wear mechanisms of both materials are related to adhesion and delamination under the chosen test conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Mallik, P. Mitra, N. Srivastava, A. Narain, S.G. Dastidar, A. Singh, T.R. Paul, Abrasive wear performance of zirconium diboride based ceramic composite. Int. J. Refract. Met. Hard Mater. 79, 224–232 (2019)

    Article  CAS  Google Scholar 

  2. P. Ritapure, R. Kharde, SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites. Int. J. Refract. Met. Hard Mater. (2019). https://doi.org/10.1016/j.ijrmhm.2019.04.013

    Article  Google Scholar 

  3. D.K. Dwivedi, Adhesive wear behavior of cast aluminum-silicon alloys: overview. Mater. Des. 31, 2517–2531 (2010)

    Article  CAS  Google Scholar 

  4. D.K. Dwivedi, A. Sharma, T.V. Rajan, Methods to improve the structure and properties of cast Al–Si alloys. Indian Foundry J. 46, 31–39 (2000)

    CAS  Google Scholar 

  5. J. Du, Y.H. Liu, S.R. Yu, W.F. Li, Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al–12Si alloy hybrid composites. Wear 257, 930–940 (2004)

    Article  CAS  Google Scholar 

  6. A. Martin, J. Rodriguez, J. Llorca, Temperature effects on the wear behavior of particulate reinforced Al-based composites. Wear 225–229, 615–620 (1999)

    Article  Google Scholar 

  7. C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, S. Pramod, Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites. Tribol. Int. 43, C623–C634 (2010)

    Article  Google Scholar 

  8. S. Kumar, V. Balasubramanian, Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites. Wear 264, 1026–1034 (2008)

    Article  CAS  Google Scholar 

  9. A. Mandal, M. Chakraborty, B.S. Murty, Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear 262, 160–166 (2007)

    Article  CAS  Google Scholar 

  10. A. Baradeswaran, A. Elaya Perumal, Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos Part B 56, 464–471 (2014)

    Article  CAS  Google Scholar 

  11. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Wear behavior of Al–Mg–Cu-based composites containing SiC particles. Tribol. Int. 42, 1230–1238 (2009)

    Article  CAS  Google Scholar 

  12. A.M. Al-Qutub, I.M. Allam, M.A.A. Samad, Wear and friction of Al–Al2O3 composites at various sliding speeds. J. Mater. Sci. 43, 5797–5803 (2008)

    Article  CAS  Google Scholar 

  13. O. Yilmaz, S. Buytoz, Abrasive wear of Al2O3-reinforced aluminium-based MMCs. Compos. Sci. Technol. 61, 2381–2392 (2001)

    Article  CAS  Google Scholar 

  14. M. Gui, S.B. Kang, Dry sliding wear behavior of plasmasprayed aluminum hybrid composite coatings. Metall. Mater. Trans. A 32, 2383–2392 (2001)

    Article  Google Scholar 

  15. Y.Q. Wang, S.J. Li, Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method. Trans. Nonferrous Met. Soc. China 21, 1441–1448 (2011)

    Article  CAS  Google Scholar 

  16. H.B. MichaelRajana, S. Ramabalanb, I. Dinaharanc, S.J. Vijayd, Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch. Civ. Mech. Eng. 14, 72–79 (2014)

    Article  Google Scholar 

  17. M. Kok, K. Ozdin, Wear resistance of aluminum alloy and its composites reinforced by Al2O3 particles. J. Mater. Process. Technol. 183, 301–309 (2007)

    Article  Google Scholar 

  18. A.A. Hamida, P.K. Ghoshb, S.C. Jain, S. Rayb, Influence of particle content and porosity on the wear behavior of cast in situ Al(Mn)–Al2O3(MnO2) composite. Wear 260, 368–378 (2006)

    Article  Google Scholar 

  19. R.L. Deuis, C. Subramanian, J.M. Yellup, Dry sliding wear of aluminum composites—a review. Compos. Sci. Technol. 57, 415–435 (1997)

    Article  CAS  Google Scholar 

  20. S. Natarajan, R. Narayanasamy, S.P. KumareshBabu, G. Dinesh, B. AnilKu-mar, K. Sivaprasad, Sliding wear behaviour of Al6063/TiB2 in situ composites at elevated temperatures. Mater. Des. 30, 2521–2531 (2009)

    Article  CAS  Google Scholar 

  21. T.G. Rio, A. Rico, M.A. Garrido, P. Poza, J. Rodriguez, Temperature and velocity transitions in dry sliding wear of Al–Li/SiC composites. Wear 268, 700–707 (2010)

    Article  Google Scholar 

  22. S. Jerome, B. Ravisankar, P. KumarMahat, S. Natarajan, Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ AlC TiC composites. Tribol. Int. 43, 2029–2036 (2010)

    Article  CAS  Google Scholar 

  23. G. Rajaram, S. Kumaran, T. Srinivasa Rao, High temperature tensile and wear behaviour of aluminum silicon alloy. Mater. Sci. Eng. A 528, 247–253 (2010)

    Article  Google Scholar 

  24. Q. Zhang, Z.X. Zuo, J.X. Liu, Effect of fatigue behavior on microstructural features in a cast Al–12Si–CuNiMg alloy under high cycle fatigue loading. J. Mater. Eng. Perform. 22, 3834–3839 (2013)

    Article  Google Scholar 

  25. Q. Zhang, Z.X. Zuo, J.X. Liu, High temperature low cycle fatigue behavior of a cast Al–12Si–CuNiMg alloy. Fatigue Fract. Eng. Mater. Struct. 36, 623–630 (2013)

    Article  CAS  Google Scholar 

  26. J.X. Liu, Q. Zhang, Z.X. Zuo, Microstructure evolution of Al–12Si–CuNiMg alloy under high temperature low cycle fatigue. Mater. Sci. Eng. A 574, 186–190 (2013)

    Article  CAS  Google Scholar 

  27. A.A. Hamid, P.K. Ghosh, S.C. Jain, S. Ray, The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)–Al2O3(TiO2) composite. Wear 165, 14–26 (2008)

    Article  Google Scholar 

  28. K. Kamalpreet, O.P. Pandey, High temperature sliding wear of spray-formed solid-lubricated aluminum matrix composites. J. Mater. Eng. Perform. 22, 3101–3110 (2013)

    Article  Google Scholar 

  29. P.C. Okonkwo, G. Kelly, B.F. Rolfe, M.P. Pereira, The effect of temperature on sliding wear of steel-tool steel pairs. Wear 282–283, 22–30 (2012)

    Article  Google Scholar 

  30. T.G. Durai, D. Karabi, D. Siddhartha, Wear behavior of nano structured Al(Zn)/Al2O3 and Al(Zn)–4Cu/Al2O3 composite materials synthesized by mechanical and thermal process. Mater. Sci. Eng. A 471, 88–94 (2007)

    Article  Google Scholar 

  31. H.G. Zhu, C.C. Jar, J.Z. Song, J. Zhao, J.L. Li, Z.H. Xie, High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr + α-Al2O3)/Al. Tribol. Int. 48, 78–86 (2012)

    Article  CAS  Google Scholar 

  32. M.R. Rosenberger, C.E. Schvezov, E. Forlerer, Wear of aluminium matrix composites under conditions that generate a mechanically mixed layer. Wear 259, 590–601 (2005)

    Article  CAS  Google Scholar 

  33. M.R. Rosenberger, E. Florlerer, C.E. Schvezov, Wear behavior of AA1060 reinforced with alumina under different load. Wear 266, 356–359 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is based on the work supported by the National Natural Science Foundation of China (Grant No. 51605021). Aeronautical Science Foundation of China (2016ZE55011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wei, S., Gu, J. et al. High-Temperature Dry Sliding Wear Behavior of Al–12Si–CuNiMg Alloy and its Al2O3 Fiber-Reinforced Composite. Met. Mater. Int. 27, 3641–3651 (2021). https://doi.org/10.1007/s12540-020-00654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00654-4

Keywords

Navigation