Skip to main content
Log in

Effects of Nanoscale Ripple Texture on Friction and Film Thickness in EHL Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effects of nanoscale ripple texture on the film thickness and friction in elastohydrodynamically lubricated (EHL) contacts were investigated through ball-on-disc experiments and numerical simulations of line contacts. The texturing was produced by femtosecond LASER irradiations and the ripple texture was in the form of sinusoidal waviness with nanoscale amplitudes and wavelengths. The experimental and numerical results indicate that the orientation of the ripples with respect to the entrainment direction has little to no effect on their capability to form a lubricating film. In the EHL regime, the ripples were found to reduce the central and minimum film thickness by half of their peak-to-peak amplitude as compared to a smooth contact. The transition from EHL to mixed lubrication regime was attributed to micro-EHL effects although the subsequent friction increase was found to be largely due to the onset of asperity contacts. In the mixed lubrication regime, the coefficient of friction was mainly determined by surface roughness and its value increased with an increase in the ripple amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a\) :

Contact radius

\(A\) :

Waviness/ripple amplitude

\(A_{\text{d}}\) :

Waviness/ripple deformed amplitude

\(d\) :

Groove depth

\(h,H\) :

Film thickness

\({H_0}\) :

Distance between ball and disc neglecting elastic deformation

\({h_{{\text{av}}}}\) :

Average central film thickness

\({h_{\text{c}}},{H_{\text{c}}}\) :

Central film thickness

\({h_{\text{m}}},{H_{\text{m}}}\) :

Minimum film thickness

\(p,P\) :

Pressure

\({p_{\text{h}}}\) :

Maximum Hertzian pressure

\({p_{{\text{m}},{\text{Hertz}}}}\) :

Mean Hertzian pressure

\({p_{\text{m}}}\) :

Mean contact pressure

\({R_{\text{q}}}\) :

RMS roughness

\({R_{\text{x}}}\) :

Reduced curvature radius

\({\text{SRR}}\) :

\({\text{Sliding}}/{\text{rolling ratio}}=100\% \cdot {u_{\text{s}}}/{u_{\text{e}}}\)

\(t,T\) :

Time

\({\Delta}T\) :

Time step

\(TE\) :

Temperature

\({u_1}\) :

Disc speed

\({u_2}\) :

Ball speed

\({u_{\text{e}}}\) :

\({\text{Entrainment speed}}=({u_1}+{u_2})/2\)

\({u_s}\) :

Sliding speed \(={u_1} - {u_2}\)

\(W\) :

Load

\(w\) :

Groove width

\(x,X\) :

Position along the contact

\({\varvec{\Delta}}X\) :

Mesh spacing

\({\Lambda}_{\text{T}}\) :

Tallian parameter

\(\varepsilon\) :

Cavitation penalty parameter

\({\eta _0}\) :

Ambient viscosity

\(\eta ,\bar {\eta }\) :

Dynamic viscosity

\(\dot {\gamma }\) :

Shear rate

\(\lambda\) :

Groove/waviness/ripple wavelength

\(\mu\) :

Friction coefficient

\({\rho _0}\) :

Ambient density

\(\rho ,\bar {\rho }\) :

Density

\(\sigma\) :

Composite RMS roughness

\(\tau\) :

Shear stress

\(\theta\) :

Ripple orientation

\(\mathcal{H}\) :

Modified Hersey number

References

  1. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Jackson, A., Cameron, A.: An interferometric study of the EHL of rough surfaces. ASLE Trans. 19(1), 50–56 (1976)

    Article  CAS  Google Scholar 

  3. Wedeven, L.D., Cusano, C.: Elastohydrodynamic film thickness measurements of artificially produced surface dents and grooves. ASLE Trans. 22(4), 369–381 (1979)

    Article  Google Scholar 

  4. Mourier, L., Mazuyer, D., Lubrecht, A.A., Donnet, C.: Transient increase of film thickness in micro-textured EHL contacts. Tribol. Int. 39, 1745–1756 (2006)

    Article  CAS  Google Scholar 

  5. Touche, T., Cayer-Barrioz, J., Mazuyer, D.: Friction of textured surfaces in EHL and mixed lubrication: effect of the groove topography. Tribol. Lett. (2016). https://doi.org/10.1007/s11249-016-0713-8

  6. Yang, P., Cui, J., Kaneta, M., Nishikawa, H.: Influence of a surface bump or groove on the lubricating performance and dimple phenomena in simple sliding point EHL contacts. J. Tribol. 126(3), 466–472 (2004)

    Article  Google Scholar 

  7. Sperka, P., Krupka, I., Hartl, M.: The effect of surface grooves on film breakdowns in point contacts. Tribol. Int. 102, 249–256 (2016)

    Article  Google Scholar 

  8. Cusano, C., Wedeven, L.D.: The influence of surface dents and grooves on traction in sliding ehd point contacts. ASLE Trans. 26(3), 306–310 (1983)

    Article  Google Scholar 

  9. Touche, T., Woloszynski, T., Podsiadlo, P., Stachowiak, G.W., Cayer-Barrioz, J., Mazuyer, D.: Numerical simulations of groove topography effects on film thickness and friction in EHL regime. Tribol. Lett. (2017). https://doi.org/10.1007/s11249-017-0896-7

  10. Lubrecht, A.A., Ten Napel, W.E., Bosma, R.: Influence of longitudinal and transverse roughness on the elastohydrodynamic lubrication of circular contacts. J. Tribol. 110(3), 421–426 (1988)

    Article  Google Scholar 

  11. Venner, C.H., Lubrecht, A.A.: Numerical analysis of the influence of waviness on the film thickness of a circular EHL contact. J. Tribol. 118(1), 153–161 (1996)

    Article  Google Scholar 

  12. Ehret, P., Dowson, D., Taylor, C.M.: Time-dependent solutions with waviness and asperities in EHL point contacts. Tribol. Ser. 32, 313–324 (1997)

    Article  Google Scholar 

  13. Kweh, C.C., Evans, H.P., Snidle, R.W.: Micro-elastohydrodynamic lubrication of an elliptical contact with transverse and three-dimensional sinusoidal roughness. J. Tribol. 111(4), 577–584 (1989)

    Article  Google Scholar 

  14. Ehret, P., Dowson, D., Taylor, C.M.: Waviness orientation in EHL point contact. Tribol. Ser. 31, 235–244 (1996)

    Article  Google Scholar 

  15. Kaneta, M., Yamada, T., Wang, J.: Micro-elastohydrodynamic lubrication of simple sliding elliptical contacts with sinusoidal roughness. Proc. Inst. Mech. Eng. 222(3), 395–405 (2008)

    Article  Google Scholar 

  16. Seabra, J., Berthe, D.: Elastohydrodynamic point contacts part ii: influence of surface speeds, surface waviness and load on the contact behaviour. Wear 130(2), 319–335 (1989)

    Article  Google Scholar 

  17. Holmes, M.J.A., Evans, H.P., Snidle, R.W.: Analysis of mixed lubrication effects in simulated gear tooth contacts. J. Tribol. 127(1), 61–69 (2005)

    Article  Google Scholar 

  18. Evans, H.P., Snidle, R.W.: A model for elastohydrodynamic film failure in contacts between rough surfaces having transverse finish. J. Tribol. 118(4), 847–857 (1996)

    Article  Google Scholar 

  19. Venner, C.H., Lubrecht, A.A.: Transient analysis of surface features in an EHL line contact in the case of sliding. J. Tribol. 116(2), 186–193 (1994)

    Article  Google Scholar 

  20. Guegan, J., Kadiric, A., Spikes, H.: A study of the lubrication of EHL point contact in the presence of longitudinal roughness. Tribol. Lett. 59, 22 (2015)

    Article  Google Scholar 

  21. Venner, C.H., Couhier, F., Lubrecht, A.A., Greenwood, J.A.: Amplitude reduction of waviness in transient ehl line contacts. Tribol Ser. 32, 103–112 (1997)

    Article  Google Scholar 

  22. Lubrecht, A.A., Graille, D., Venner, C.H., Greenwood, J.A.: Waviness amplitude reduction in EHL line contacts under rolling-sliding. J. Tribol. 120, 705–709 (1998)

    Article  CAS  Google Scholar 

  23. Sperka, P., Krupka, I., Hartl, M.: The behaviour of surface roughness in EHL contacts under small slide to roll ratios. Tribol. Lett. 47, 357 (2012)

    Article  Google Scholar 

  24. De Silva, S., Anderson, J.C., Leather, J.A.: Model rough surfaces in elastohydrodynamic lubrication. Thin Solid Films 96, 1 (1982)

    Article  Google Scholar 

  25. Hooke, C.J.: Surface roughness modification in EHL line contacts—the effect of roughness wavelength, orientation and operating conditions. Tribol. Ser. 36 (1999)

  26. Chang, L., Jackson, A., Webster, M.N.: Effects of 3-d surface topography on the EHL film thickness and film breakdown. Tribol. Trans. 37, 435 (1994)

    Article  CAS  Google Scholar 

  27. Patching, M.J., Evans, H.P., Snidle, R.W.: Micro-EHL analysis of ground and superfinished steel discs used to simulate gear tooth contacts. Tribol. Trans. 39, 595 (1996)

    Article  CAS  Google Scholar 

  28. Kaneta, M., Sakai, T., Nishikawa, H.: Effects of surface roughness on point contact EHL. STLE Tribol. Trans. 36(4), 605–612 (1993)

    Article  Google Scholar 

  29. Kaneta, M., Tani, N., Nishikawa, H.: Optical interferometric observations of the effect of moving transverse asperities on point contact EHL films. Tribol. Ser. 41, 101–109 (2002)

    Article  Google Scholar 

  30. Ali, F., Kaneta, M., Krupka, I., Hartl, M.: Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts. Tribol. Trans. 84, 81–89 (2015)

    Article  Google Scholar 

  31. Leamy, H.J., Rozgonyi, G.A., Sheng, T.T., Celler, G.K.: Periodic regrowth phenomena produced by laser annealing of ion-implanted silicon. Appl. Phys. Lett. 32, 535 (1978)

    Article  CAS  Google Scholar 

  32. Ernesto, A., Mazuyer, D., Cayer-Barrioz, J.: The combined role of soot aggregation and surface effect on the friction of a lubricated contact. Tribol. Lett. 55, 329–341 (2014)

    Article  CAS  Google Scholar 

  33. Diew, M., Ernesto, A., Cayer-Barrioz, J., Mazuyer, D.: Stribeck and traction curves under moderate contact pressure: from friction to interfacial rheology. Tribol. Lett. 57, 8 (2015)

    Article  Google Scholar 

  34. Cross, M.M.: Polymer rheology: inuence of molecular weight and polydispersity. J. Appl. Polym Sci. 13, 765 (1969)

    Article  CAS  Google Scholar 

  35. Roelands, C.J.A.: Correlational aspects of the viscosity-temperature-pressure relationship of the lubricating oils. PhD thesis, University of Technology Delft, The Netherlands (1966)

  36. Braun, M.J., Hannon, W.M.: Cavitation formation and modelling for fluid film bearings: a review. Proc. Inst. Mech. Eng. J. 224, 839–863 (2010)

    Article  Google Scholar 

  37. Nijenbanning, G., Venner, C.H., Moes, H.: Film thickness in elastohydrodynamically lubricated elliptic contacts. Wear 176, 217–229 (1994)

    Article  Google Scholar 

  38. Moes, H.: Optimum similarity analysis with applications to elastohydrodynamic lubrication. Wear 159, 57–66 (1992)

    Article  Google Scholar 

  39. Venner, C.H.: Multilevel solution of the EHL line and point contact problems. University of Twente, The Netherlands, PhD thesis (1991)

  40. Mourier, L.: Optimisation des contacts elastohydrodynamiques par la micro-texturation de surface. Ecole Centrale de Lyon, France, PhD thesis (2007) (in French)

  41. Mazuyer, D., Ernesto, A., Cayer-Barrioz, J.: Theoretical modelling of film-forming mechanisms under transient conditions: application to deceleration and experimental validation. Tribol. Lett. (2017). https://doi.org/10.1007/s11249-016-0801-9

  42. Schipper, D.J.: Transitions in the lubrication of concentred contacts. University of Twente, The Netherlands, PhD thesis (1966)

  43. Emmens, W.C.: Tribology of flat contacts and its application in deep drawing. University of Twente, The Netherlands, PhD thesis (1997)

  44. Tallian, T.E.: On competing failure modes in rolling contact. ASLE Trans. 10, 418 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the School of Civil and Mechanical Engineering, Curtin University for the support of this study and acknowledge IREIS Company (France) for active collaboration and fabricating surface textures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Woloszynski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woloszynski, T., Touche, T., Podsiadlo, P. et al. Effects of Nanoscale Ripple Texture on Friction and Film Thickness in EHL Contacts. Tribol Lett 67, 16 (2019). https://doi.org/10.1007/s11249-018-1130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1130-y

Keywords

Navigation