Skip to main content

Advertisement

Log in

Novel Design of Copper–Graphite Self-Lubricating Composites for Reliability Improvement Based on 3D Network Structures of Copper Matrix

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper proposes a new strategy to design the copper–graphite self-lubricating composites (CGSCs) for dynamic sealing applications. The relationships among structural parameters, mechanical and tribological properties of CGSCs were investigated. Results showed that the composites with a 3D network structure presented superior comprehensive mechanical performance; the bending strength, fracture toughness and impact toughness can reach 352 MPa, 9.6 MPa m1/2 and 9.2 J cm−2, respectively, which are 1.4, 1.7 and 5.8 higher than conventional Cu663–graphite composite. This new strategy was based on a combination of the large plastic deformation of the copper 3D network, and considerable crack deflection includes by spherical graphite particles in fracture. Meanwhile, this novel design shows the perfect combination of the mechanical reliability and self-lubricated ability. The 3D-CGSCs exhibit more excellent tribological properties when sliding against AISI 52100 bearing steel under dry condition at room temperature. The friction coefficient and wear rate are stable and with low value under a wide range of loads and reciprocating frequencies, and it possesses good anti-friction capability over a long sliding distance (3 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen, J.K., Huang, I.S.: Thermal properties of aluminum–graphite composites by powder metallurgy. Compos. B Eng. 44(1), 698–703 (2013). https://doi.org/10.1016/j.compositesb.2012.01.083

    Article  CAS  Google Scholar 

  2. Grandin, M., Wiklund, U.: Wear phenomena and tribofilm formation of copper/copper–graphite sliding electrical contact materials. Wear. 398, 227–235 (2018). https://doi.org/10.1016/j.wear.2017.12.012

    Article  CAS  Google Scholar 

  3. Grandin, M., Wiklund, U.: Influence of mechanical and electrical load on a copper/copper–graphite sliding electrical contact. Tribol. Int. 121, 1–9 (2018). https://doi.org/10.1016/j.triboint.2018.01.004

    Article  CAS  Google Scholar 

  4. Rohatgi, P.K., Ray, S., Liu, Y.: Tribological properties of metal matrix graphite particle composites. Int. Mater. Rev. 37(3), 129–149 (1992). https://doi.org/10.1179/imr.1992.37.1.129

    Article  CAS  Google Scholar 

  5. Ma, W.L., Lu, J.J.: Effect of sliding speed on surface modification and tribological behavior of copper–graphite composite. Tribol. Lett. 41(2), 363–370 (2011). https://doi.org/10.1007/s11249-010-9718-x

    Article  CAS  Google Scholar 

  6. He, D.H., Manory, R.: A novel electrical contact material with improved self–lubrication for railway current collectors. Wear. 249(7), 626–636 (2001). https://doi.org/10.1016/s0043-1648(01)00700-1

    Article  CAS  Google Scholar 

  7. Su, Y.F., Zhang, Y.S., Song, J.J., Hu, L.T.: Tribological behavior and lubrication mechanism of self–lubricating ceramic/metal composites: the effect of matrix type on the friction and wear properties. Wear. 372, 130–138 (2017). https://doi.org/10.1016/j.wear.2016.12.005

    Article  CAS  Google Scholar 

  8. Moustafa, S.F., ElBadry, S.A., Sanad, A.M.: Effect of graphite with and without copper coating on consolidation behaviour and sintering of copper–graphite composite. Powder Metall. 40(3), 201–206 (1997). https://doi.org/10.1179/pom.1997.40.3.201

    Article  CAS  Google Scholar 

  9. Kadkhodapour, J., Montazerian, H., Samadi, M., Schmauder, S., Mehrizi, A.A.: Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique. Mater. Des. 83, 352–362 (2015). https://doi.org/10.1016/j.matdes.2015.05.086

    Article  CAS  Google Scholar 

  10. Ji, K.J., Shan, W.G., Xia, Y.Q., Dai, Z.D.: The tribological behaviors of self-lubricating composites as filler in copper foam. Tribol. Trans. 55(1), 20–31 (2012). https://doi.org/10.1080/10402004.2011.622069

    Article  CAS  Google Scholar 

  11. Davies, G.J., Zhen, S.: Metallic foams-their production, properties and applications. J. Mater. Sci. 18(7), 1899–1911 (1983). https://doi.org/10.1007/bf00554981

    Article  CAS  Google Scholar 

  12. Fan, Z., Zhang, B., Gao, Y., Guan, X., Xu, P.: Deformation mechanisms of spherical cell porous aluminum under quasi-static compression. Scripta Mater. 142, 32–35 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.019

    Article  CAS  Google Scholar 

  13. Yang, W.L., Zhou, L.P., Peng, K., Zhu, J.J., Wan, L.: Effect of tungsten addition on thermal conductivity of graphite/copper composites. Compos. B Eng. 55, 1–4 (2013). https://doi.org/10.1016/j.compositesb.2013.05.023

    Article  CAS  Google Scholar 

  14. Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y.: Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear. 255, 573–578 (2003). https://doi.org/10.1016/s0043-1648(03)00072-3

    Article  CAS  Google Scholar 

  15. Joyce, M.R., Reed, P.A.S., Syngellakis, S.: Numerical modelling of crack shielding and deflection in a multi-layered material system. Mat. Sci. Eng. A. 342(1–2), 11–22 (2003). https://doi.org/10.1016/s0921-5093(02)00279-4

    Article  Google Scholar 

  16. Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 451(7182), 1085–1089 (2008). https://doi.org/10.1038/nature06598

    Article  CAS  Google Scholar 

  17. Song, J.J., Su, Y.F., Fan, H.Z., Zhang, Y.S., Hu, L.T.: A novel design to produce high-strength and high-toughness alumina self-lubricated composites with enhanced thermal-shock resistance—Part I: mechanical properties and thermal shock behavior of Al2O3/Mo–Al2O3 laminated composites. J. Eur. Ceram. Soc. 37(1), 213–221 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.08.016

    Article  CAS  Google Scholar 

  18. Purcek, G., Saray, O., Karaman, I., Kucukomeroglu, T.: Effect of severe plastic deformation on tensile properties and impact toughness of two-phase Zn–40Al alloy. Mat. Sci. Eng. A. 490(1–2), 403–410 (2008). https://doi.org/10.1016/j.msea.2008.01.080

    Article  CAS  Google Scholar 

  19. Mirone, G.: A new model for the elastoplastic characterization and the stress–strain determination on the necking section of a tensile specimen. Int. J. Solids Struct. 41(13), 3545–3564 (2004). https://doi.org/10.1016/j.ijsolstr.2004.02.011

    Article  Google Scholar 

  20. Onck, P., Van Merkerk, R., Raaijmakers, A., De Hosson, J.T.M.: Fracture of open-and closed-cell metal foams. J. Mater. Sci. 40(22), 5821–5828 (2005). https://doi.org/10.1007/s10853-005-4996-7

    Article  CAS  Google Scholar 

  21. Zhang, B.Y., Lin, Y.F., Li, S., Zhai, D.X., Wu, G.H.: Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos. B Eng. 98, 288–296 (2016). https://doi.org/10.1016/j.compositesb.2016.05.034

    Article  CAS  Google Scholar 

  22. Gupta, P.K., Iqbal, M.A., Mohammad, Z.: Energy dissipation in plastic deformation of thin aluminum targets subjected to projectile impact. Int. J. Impact Eng. 110, 85–96 (2017). https://doi.org/10.1016/j.ijimpeng.2017.05.008

    Article  Google Scholar 

  23. Zhao, H.J., Liu, L., Wu, Y.T., Hu, W.B.: Investigation on wear and corrosion behavior of Cu–graphite composites prepared by electroforming. Compos. Sci. Tech. 67(6), 1210–1217 (2007). https://doi.org/10.1016/j.compscitech.2006.05.013

    Article  CAS  Google Scholar 

  24. Cui, G.J., Niu, M.Y., Zhu, S.Y., Yang, J., Bi, Q.L.: Dry-sliding tribological properties of bronze–graphite composites. Tribol. Lett. 48(2), 111–122 (2012). https://doi.org/10.1007/s11249-012-0007-8

    Article  CAS  Google Scholar 

  25. Moustafa, S.F., El-Badry, S.A., Sanad, A.M., Kieback, B.: Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear. 253(7–8), 699–710 (2002). https://doi.org/10.1016/s0043-1648(02)00038-8

    Article  CAS  Google Scholar 

  26. Liu, Y.B., Lim, S.C., Ray, S., Rohatgi, P.K.: Friction and wear of aluminum–graphite composites—the smearing process of graphite during sliding. Wear. 159(2), 201–205 (1992). https://doi.org/10.1016/0043-1648(92)90303-p

    Article  CAS  Google Scholar 

  27. Riahi, A.R., Alpas, A.T.: The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear. 251, 1396–1407 (2001). https://doi.org/10.1016/s0043-1648(01)00796-7

    Article  Google Scholar 

  28. Zhao, J.H., Li, P., Tang, Q., Zhang, Y.Q., He, J.S., He, K.: Influence of metal-coated graphite powders on microstructure and properties of the bronze-matrix/graphite composites. J. Mater. Eng. Perform. 26(2), 792–801 (2017). https://doi.org/10.1007/s11665-016-2495-4

    Article  CAS  Google Scholar 

  29. Lim, S.C., Ashby, M.F.: Wear-mechanism maps. Acta Metall. 35(1), 1–24 (1987). https://doi.org/10.1016/0001-6160(87)90209-4

    Article  CAS  Google Scholar 

  30. Amanov, A., Cho, I.S., Pyoun, Y.S., Lee, C.S., Park, I.G.: Micro-dimpled surface by ultrasonic nanocrystal surface modification and its tribological effects. Wear. 286, 136–144 (2012). https://doi.org/10.1016/j.wear.2011.06.001

    Article  CAS  Google Scholar 

  31. Amanov, A., Sasaki, S.: A study on the tribological characteristics of duplex-treated Ti–6Al–4V alloy under oil-lubricated sliding conditions. Tribol. Int. 64, 155–163 (2013). https://doi.org/10.1016/j.triboint.2013.03.015

    Article  CAS  Google Scholar 

  32. Langhorn, J., Borjali, A., Hippensteel, E., Nelson, W., Raeymaekers, B.: Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: multi-directional wear and corrosion measurements. Tribol. Int. 124, 178–183 (2018). https://doi.org/10.1016/j.triboint.2018.04.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51775534) and the Youth Innovation Promotion Association CAS (2013272). Thanks are also due to Hengzhong Fan (State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China) for the assistance during friction testing and the improvement in mechanism diagram.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Song or Yongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Song, J., Su, Y. et al. Novel Design of Copper–Graphite Self-Lubricating Composites for Reliability Improvement Based on 3D Network Structures of Copper Matrix. Tribol Lett 66, 143 (2018). https://doi.org/10.1007/s11249-018-1098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1098-7

Keywords

Navigation