Skip to main content
Log in

Dynamic Characterisation of Rectangular Aerostatic Pads with Multiple Inherent Orifices

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Aerostatic pads are successfully employed in linear systems where very accurate and precise positioning is required, e.g. machine tools and measuring equipment. Both the static and dynamic performance of many different types of aerostatic pads have been already numerically and experimentally investigated. However, literature does not present so many works that investigate the performance of rectangular aerostatic pads with multiple restrictors, especially as regards their dynamic features. This paper shows an experimental and a numerical study of the static and dynamic performance of a rectangular aerostatic pad with multiple orifices distributed on a supply rectangle. The paper investigates the effect of the orifices diameter, of their position and of the supply pressure on the pad performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It must be lower than the 10–15% of the nominal air gap and sufficiently large to provide a good signal-to-noise ratio.

References

  1. Lentini, L., Moradi, M., Colombo, F.: A historical review of gas lubrication: from reynolds to active compensations. Tribol. Ind. 40(2), 165–182 (2018). https://doi.org/10.24874/ti.2018.40.02.01

    Article  Google Scholar 

  2. Raparelli, T., Viktorov, V., Colombo, F., Lentini, L.: Aerostatic thrust bearings active compensation: critical review. Precis. Eng. 44, 1–12 (2016)

    Article  Google Scholar 

  3. Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: from stability analysis to active compensation. Precis. Eng. 33(2), 117–126 (2009)

    Article  Google Scholar 

  4. Belforte, G., Raparelli, T., Trivella, A., Viktorov, V., Visconte, C.: CFD analysis of a simple orifice-type feeding system for aerostatic bearings. Tribol. Lett. 58(2), 25 (2015)

    Article  Google Scholar 

  5. Belforte, G., Raparelli, T., Viktorov, V., Trivella, A: Discharge coefficients of orifice-type restrictor for aerostatic bearings. Tribol. Int. 40(3), 512–521 (2007)

    Article  Google Scholar 

  6. Belforte, G., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: Experimental analysis of air pads with micro holes. Tribol. Trans. 56(2), 169–177 (2013)

    Article  CAS  Google Scholar 

  7. Kazimierski, Z., Trojnarski, J.: Investigations of externally pressurized gas bearings with different feeding systems. J. Lubr. Technol. 102(1), 59–64 (1980)

    Article  Google Scholar 

  8. Boffey, D.A., Duncan, A.E., Dearden, J.K.: An experimental investigation of the effect of orifice restrictor size on the stiffness of an industrial air lubricated thrust bearing. Tribol. Int. 14(5), 287–291 (1981)

    Article  Google Scholar 

  9. Boffey, D.A., Wilson, P.M.: An experimental investigation of the pressures at the edge of a gas bearing pocket. J. Lubr. Technol. 103(4), 593–600 (1981)

    Google Scholar 

  10. Chen, X.-D., He, X.-M.: The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography. Tribol. Int. 39(11), 1336–1341 (2006)

    Article  Google Scholar 

  11. Li, Y.T., Ding, H.: Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice—type restrictor on its performance. Tribol. Int. 40(7), 1120–1126 (2007)

    Article  CAS  Google Scholar 

  12. Talukder, H.M., Stowell, T.B.: Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing. Tribol. Int. 36(8), 585–591 (2003)

    Article  Google Scholar 

  13. Grossman, R.L.: Application of flow and stability theory to the design of externally pressurized spherical gas bearings. J. Basic Eng. 85(4), 495–502 (1963)

    Article  Google Scholar 

  14. Colombo, F., Moradi, M., Raparelli, T., Trivella, A., Viktorov, V.: Multiple holes rectangular gas thrust bearing: dynamic stiffness calculation with lumped parameters approach. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science, pp. 421–429. Springer, New York (2017)

    Chapter  Google Scholar 

  15. Al Bender, F.: Contributions to the Design Theory of Circular Centrally Fed Aerostatic Bearings. Phd thesis, Katholieke Universiteit Leuven (1992)

  16. Richardson, H.H., Cambridge, M.: 1958, “Static and Dynamic Characteristics of Compensated Gas Bearings,” Trans ASME, pp. 1503–1509

  17. Licht, L., Fuller, D.D., Sternlicht, B.: Self-excited vibrations of an air-lubricated thrust bearing. Trans ASME 80(2), 411–414 (1958)

    Google Scholar 

  18. Licht, L., Elrod, H.: A study of the stability of externally pressurized gas bearings. J. Appl. Mech. 27(2), 250–258 (1960)

    Article  Google Scholar 

  19. Turnblade, R.C.: The molecular transit time and its correlation with the stability of externally pressurized gas-lubricated bearings. J. Basic Eng. 85(2), 297–303 (1963)

    Article  CAS  Google Scholar 

  20. Salbu, E.O.J.: Compressible squeeze films and squeeze bearings. J. Basic Eng. 86(2), 355–364 (1964)

    Article  Google Scholar 

  21. Blondeel, E., Snoeys, R., Devrieze, L.: Dynamic stability of externally pressurized gas bearings. J. Lubr. Technol. 102(4), 511–519 (1980)

    Article  Google Scholar 

  22. Plessers, P., Snoeys, R.: Dynamic identification of convergent externally pressurized gas-bearing gaps. J. Tribol. 110(2), 263–270 (1988)

    Article  Google Scholar 

  23. Plessers, P., Snoeys, R.: Dynamic stability of mechanical structures containing externally pressurized gas-lubricated thrust bearings. J. Tribol. 110(2), 271–278 (1988)

    Article  Google Scholar 

  24. Stiffler, A.K.: Analysis of the stiffness and damping of an inherently compensated, multiple-inlet, circular thrust bearing. J. Lubr. Technol. 96(3), 329–336 (1974)

    Article  Google Scholar 

  25. Stiffler, A.K., Smith, D.M.: Dynamic characteristics of an inherently compensated, square, gas film bearing. J. Lubr. Technol. 97(1), 52–62 (1975)

    Article  Google Scholar 

  26. Miyatake, M., Yoshimoto, S.: Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes. Tribol. Int. 43(8), 1353–1359 (2010)

    Article  Google Scholar 

  27. Renn, J.-C., Hsiao, C.-H.: Experimental and CFD study on the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings. Tribol. Int. 37(4), 309–315 (2004)

    Article  Google Scholar 

  28. Nishio, U., Somaya, K., Yoshimoto, S.: Numerical calculation and experimental verification of static and dynamic characteristics of aerostatic thrust bearings with small feedholes. Tribol. Int. 44(12), 1790–1795 (2011)

    Article  Google Scholar 

  29. Charki, A., Diop, K., Champmartin, S., Ambari, A.: Numerical simulation and experimental study of thrust air bearings with multiple orifices. Int. J. Mech. Sci. 72, 28–38 (2013)

    Article  Google Scholar 

  30. Bhat, N., Kumar, S., Tan, W., Narasimhan, R., Low, T.C.: Performance of inherently compensated flat pad aerostatic bearings subject to dynamic perturbation forces. Precis. Eng. 36(3), 399–407 (2012)

    Article  Google Scholar 

  31. Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic Model of a Grooved Thrust Bearing: Numerical Model and Experimental Validation. In: Proceeding of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2017, vol. 4, pp. 506–517 (2017)

  32. Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Experimental identification of an aerostatic thrust bearing. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science, pp. 441–448. Springer, New York (2017)

    Chapter  Google Scholar 

  33. Lentini, L.: Design, test and identification of an active aerostatic thrust bearing with a compliant mechanism and piezo actuator. Politecnico di Torino (2017)

  34. Aguirre, G., Al-Bender, F., Van Brussel, H.: A Multiphysics Model for Optimizing the Design of Active Aerostatic Thrust Bearings. Precis. Eng. 34(3), 507–515 (2010)

    Article  Google Scholar 

  35. Iruikwu, D., Isomaa, J.-M., Korkolainen, P., Kiviluoma, P., Kuosmanen, P., Calonius, O.: Dynamic loading system for air bearing testing. In: Proceedings of the International Conference of DAAAM Baltic “Industrial Engineering” pp. 309–314 (2012)

  36. Yoshimoto, S., Kohno, K.: Static and dynamic characteristics of aerostatic circular porous thrust bearings (effect of the shape of the air supply area). J. Tribol. 123(3), 501 (2001)

    Article  Google Scholar 

  37. Yoshimoto, S., Tamura, J., Nakamura, T.: Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribol. Int. 32(12), 731–738 (1999)

    Article  Google Scholar 

  38. Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Actively compensated aerostatic thrust bearing: design, modelling and experimental validation. Meccanica. 52, 3645–3660 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Colombo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, F., Lentini, L., Raparelli, T. et al. Dynamic Characterisation of Rectangular Aerostatic Pads with Multiple Inherent Orifices. Tribol Lett 66, 133 (2018). https://doi.org/10.1007/s11249-018-1087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1087-x

Keywords

Navigation