Skip to main content

On the Static Performance of Concave Aerostatic Pads

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

Numerical models have been largely utilized as a valuable tool to investigate the performance of aerostatic pads. These models make it possible to evaluate the effect of different parameters, e.g., supply pressure, orifices diameter and locations. This paper presents a numerical study to investigate to what extent the use of concave surfaces can modify the static performance of aerostatic pads. The study consists in comparing the performance of flat and concave pads in the presence of different supply pressures and maximum depths of concavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lentini, L., Moradi, M., Colombo, F.: A Historical Review of Gas Lubrication: From Reynolds to Active Compensations. Tribology in Industry. 40, 165–182 (2018). https://doi.org/10.24874/ti.2018.40.02.01

  2. Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: From stability analysis to active compensation. Precision Engineering. 33, 117–126 (2009). doi:http://dx.doi.org/10.1016/j.precisioneng.2008.06.003

  3. Raparelli, T., Viktorov, V., Colombo, F., Lentini, L.: Aerostatic thrust bearings active compensation: Critical review. Precision Engineering. 44, 1–12 (2016). doi:http://dx.doi.org/10.1016/j.precisioneng.2015.11.002

  4. Blondeel, E., Snoeys, R., Devrieze, L.: Dynamic Stability of Externally Pressurized Gas Bearings. Journal of Lubrication Technology. 102, 511–519 (1980)

    Google Scholar 

  5. Richardson, H.H., Cambridge, M.: Static and dynamic characteristics of compensated gas bearings. Trans. of the ASME. 1503–1509 (1958)

    Google Scholar 

  6. Roudebush, W.H.: An analysis of the effect of several parameters on the stability of an air lubricated hydrostatic thrust bearing. Technical note / National Advisory Committee for Aeronautics; 4095, Washington (1957)

    Google Scholar 

  7. Licht, L., Fuller, D.D., Sternlicht, B.: Self-excited vibrations of an air-lubricated thrust bearing. Trans. ASME. 80, 411–414 (1958)

    Google Scholar 

  8. Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: A Lumped Model for Grooved Aerostatic Pad. In: Advances in Service and Industrial Robotics. pp. 678–686. Springer International Publishing (2018)

    Google Scholar 

  9. Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Vladimir, V.: A nonlinear lumped parameter model of an externally pressurized rectangular grooved air pad bearing. In: Advances in Italian Mechanism Science. pp. 490–497. Springer (2018)

    Google Scholar 

  10. Ghodsiyeh, D., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: Diaphragm valve-controlled air thrust bearing. Tribology International. 109, 328–335 (2017)

    Google Scholar 

  11. Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Experimental Identification of an Aerostatic Thrust Bearing. In: Advances in Italian Mechanism Science. pp. 441–448. Springer (2017)

    Google Scholar 

  12. Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Actively compensated aerostatic thrust bearing: design, modelling and experimental validation. Meccanica. 1–16 (2017). https://doi.org/10.1007/s11012-017-0689-y

  13. Aoyama, H., Watanabe, I., Akutsu, K., Shimokohbe, A.: An Ultra Precision Straight Motion System (1st Report). Journal of the Japan Society for Precision Engineering. 54, 558–563 (1988). https://doi.org/10.2493/jjspe.54.558

  14. Matsumoto, H., Yamaguchi, J., Aoyama, H., Shimokohbe, A.: An Ultra Precision Straight Motion System (2nd Report). Journal of the Japan Society for Precision Engineering. 54, 1945–1950 (1988). https://doi.org/10.2493/jjspe.54.1945

  15. Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic Characterisation of Rectangular Aerostatic Pads with Multiple Inherent Orifices. Tribology Letters. 66, (2018). https://doi.org/10.1007/s11249-018-1087-x

  16. Charki, A., Diop, K., Champmartin, S., Ambari, A.: Numerical simulation and experimental study of thrust air bearings with multiple orifices. International Journal of Mechanical Sciences. 72, 28–38 (2013). https://doi.org/10.1016/j.ijmecsci.2013.03.006

  17. Belforte, G., Raparelli, T., Viktorov, V., Trivella, a.: Discharge coefficients of orificetype restrictor for aerostatic bearings. Tribology International. 40, 512–521 (2007). https://doi.org/10.1016/j.triboint.2006.05.003

  18. Peyret, R., Viviand, H.: Pseudo-Unsteady Methods for Inviscid or Viscous Flow Computation. In: Casci, C. and Bruno, C. (eds.) Recent Advances in the Aerospace Sciences: In Honor of Luigi Crocco on His Seventy-fifth Birthday. pp. 41–71. Springer US, Boston, MA (1985)

    Google Scholar 

  19. Holster, P.L., Jacobs, J.A.H.: Theoretical analysis and experimental verification on the static properties of externally pressurized air-bearing pads with load compensation. Tribology International. 20, 276–289 (1987). doi:http://dx.doi.org/10.1016/0301-679X(87)90028-4

  20. Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic model of a grooved thrust bearing: Numerical model and experimental validation. Presented at the AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Lentini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colombo, F., Lentini, L., Raparelli, T., Viktorov, V., Trivella, A. (2019). On the Static Performance of Concave Aerostatic Pads. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_389

Download citation

Publish with us

Policies and ethics