Skip to main content
Log in

First-Principles Investigation on the Tribological Properties of h-BN Bilayer Under Variable Load

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Using first-principles method, for h-BN bilayer, we successfully probe the major factors of different low-friction paths in the three-dimensional potential energy surface (3D-PES) under variable loads. By means of the static PES and charge density difference analysis, we demonstrate how electrostatic interactions, with regard for van der Waals contributions at 0 nN, progressively impact the shape of 3D-PES and low-friction paths with increasing the normal load. Herein, the sliding properties of h-BN bilayers have a distinct relative orientation. Especially, the load-induced 3D-PES with variable shape is assigned to the band gap and repulsive van der Waals force. It is noted that the low friction not only is obtained for the commensurate layers under low loads, but also high ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi, M., Shen, Z., Zhao, X., Liang, S., Liu, L.: Boron nitride nanosheets as oxygen-atom corrosion protective coatings. Appl. Phys. Lett. 104(14), 143101 (2014). https://doi.org/10.1063/1.4870530

    Article  CAS  Google Scholar 

  2. Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a

    Article  CAS  Google Scholar 

  3. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano. 4(6), 2979–2993 (2010). https://doi.org/10.1021/nn1006495

    Article  CAS  Google Scholar 

  4. Eichler, J., Lesniak, C.: Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28(5), 1105–1109 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.005

    Article  CAS  Google Scholar 

  5. Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139

    Article  CAS  Google Scholar 

  6. Zhi, C., Bando, Y., Tang, C., Kuwahara, H., Golberg, D.: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21(28), 2889–2893 (2009). https://doi.org/10.1002/adma.200900323

    Article  CAS  Google Scholar 

  7. Shen, H., Guo, J., Wang, H., Zhao, N., Xu, J.: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces. 7(10), 5701–5708 (2015). https://doi.org/10.1021/am507416y

    Article  CAS  Google Scholar 

  8. Xuemei, L., Jun, Y., Jianxin, Z., Wanlin, G.: Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25(10), 105701 (2014)

    Article  Google Scholar 

  9. Watanabe, S., Miyake, S., Murakawa, M.: Tribological properties of cubic, amorphous and hexagonal boron nitride films. In: Metallurgical Coatings and Thin Films, pp. 406–410. Oxford, Elsevier (1991)

    Google Scholar 

  10. Cho, D.-H., Kim, J.-S., Kwon, S.-H., Lee, C., Lee, Y.-Z.: Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear. 302(1), 981–986 (2013). https://doi.org/10.1016/j.wear.2012.12.059

    Article  CAS  Google Scholar 

  11. Podgornik, B., Kosec, T., Kocijan, A., Donik, Č: Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol. Int. 81, 267–275 (2015). https://doi.org/10.1016/j.triboint.2014.09.011

    Article  CAS  Google Scholar 

  12. Kumari, S., Sharma, O.P., Gusain, R., Mungse, H.P., Kukrety, A., Kumar, N., Sugimura, H., Khatri, O.P.: Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl. Mater. Interfaces. 7(6), 3708–3716 (2015). https://doi.org/10.1021/am5083232

    Article  CAS  Google Scholar 

  13. Wei, D., Meng, Q., Jia, D.: Mechanical and tribological properties of hot-pressed h-BN/Si3N4 ceramic composites. Ceram. Int. 32(5), 549–554 (2006). https://doi.org/10.1016/j.ceramint.2005.04.010

    Article  CAS  Google Scholar 

  14. Tyagi, R., Xiong, D., Li, J.: Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear. 270(7), 423–430 (2011). https://doi.org/10.1016/j.wear.2010.08.013

    Article  CAS  Google Scholar 

  15. Koskilinna, J.O., Linnolahti, M., Pakkanen, T.A.: Friction coefficient for hexagonal boron nitride surfaces from ab initio calculations. Tribol. Lett. 24(1), 37–41 (2006). https://doi.org/10.1007/s11249-006-9120-x

    Article  CAS  Google Scholar 

  16. Clark Stewart, J., Segall Matthew, D., Pickard Chris, J., Hasnip Phil, J., Probert Matt, I.J., Refson, K., Mike, P.: First principles methods using CASTEP. Zeitschrift für Kristallographie 220, 567 (2005)

    Google Scholar 

  17. Björkman, T., Gulans, A., Krasheninnikov, A.V., Nieminen, R.M.: van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108(23), 235502 (2012)

    Article  Google Scholar 

  18. Zhang, R., Zhao, J., Yang, Y., Shi, W., Lu, Z., Wang, J.: Understanding the friction behavior of sulfur-terminated diamond-like carbon films under high vacuum by first-principles calculations. Curr. Appl. Phys. 18(3), 317–323 (2018). https://doi.org/10.1016/j.cap.2018.01.006

    Article  Google Scholar 

  19. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  20. Liu, L., Feng, Y.P., Shen, Z.X.: Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003)

    Article  Google Scholar 

  21. Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir. 27(11), 6862–6867 (2011). https://doi.org/10.1021/la200783a

    Article  CAS  Google Scholar 

  22. Zhang, Q., Qi, Y., Hector, L.G., Cagin, T., Goddard, W.A.: Origin of static friction and its relationship to adhesion at the atomic scale. Phys. Rev. B. 75(14), 144114 (2007). https://doi.org/10.1103/PhysRevB.75.144114

    Article  CAS  Google Scholar 

  23. Neuville, S.: Carbon Structure Analysis with Differentiated Raman Spectroscopy: Refined Raman Spectroscopy Fundamentals For Improved Carbon Material Engineering. Riga, LAP Lambert Academic Publishing, (2014)

    Google Scholar 

  24. Sachdev, H., Haubner, R., Nöth, H., Lux, B.: Investigation of the c-BN/h-BN phase transformation at normal pressure. Diam. Relat. Mater. 6(2), 286–292 (1997). https://doi.org/10.1016/S0925-9635(96)00697-8

    Article  CAS  Google Scholar 

  25. Neuville, S.: Antiwear material criterial. JPJ Solids Struct 3, 33–42 (2009)

    Google Scholar 

  26. Neuville, S.: Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films. Surf. Coatings Technol. 206(4), 703–726 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.055

    Article  CAS  Google Scholar 

  27. Tománek, D., Zhong, W., Thomas, H.: Calculation of an atomically modulated friction force in atomic-force microscopy. EPL 15(8), 887 (1991)

    Article  Google Scholar 

  28. Chen, B., Bi, Q., Yang, J., Xia, Y., Hao, J.: Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41(12), 1145–1152 (2008). https://doi.org/10.1016/j.triboint.2008.02.014

    Article  CAS  Google Scholar 

  29. Pawlak, Z., Kaldonski, T., Pai, R., Bayraktar, E., Oloyede, A.: A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—an additive in porous sliding bearings for a car clutch. Wear. 267(5), 1198–1202 (2009). https://doi.org/10.1016/j.wear.2008.11.020

    Article  CAS  Google Scholar 

  30. An, X., Sun, J., Lu, Z., Ma, F., Zhang, G.: Pressure-induced insulator-semiconductor transition in bilayer hexagonal boron nitride. Ceram. Int. 43(8), 6626–6630 (2017). https://doi.org/10.1016/j.ceramint.2017.02.037

    Article  CAS  Google Scholar 

  31. Zhang, R., Wang, L.: Effect of compressive strain on the Hertzian contact of self-mated fluorinated carbon films. RSC Adv. 5(52), 41604–41607 (2015). https://doi.org/10.1039/C5RA06569K

    Article  CAS  Google Scholar 

  32. He, X.Q., Kitipornchai, S., Liew, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids. 53(2), 303–326 (2005). https://doi.org/10.1016/j.jmps.2004.08.003

    Article  CAS  Google Scholar 

  33. Feiler, A.A., Bergström, L., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir. 24(6), 2274–2276 (2008). https://doi.org/10.1021/la7036907

    Article  CAS  Google Scholar 

  34. Yakubov, G.E., McColl, J., Bongaerts, J.H.H., Ramsden, J.J.: Viscous boundary lubrication of hydrophobic surfaces by mucin. Langmuir. 25(4), 2313–2321 (2009). https://doi.org/10.1021/la8018666

    Article  CAS  Google Scholar 

  35. Thormann, E., Yun, S.H., Claesson, P.M., Linnros, J.: Amontonian friction induced by flexible surface features on microstructured silicon. ACS Appl. Mater. Interfaces. 3(9), 3432–3439 (2011). https://doi.org/10.1021/am200657d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51605336), the Foundation of the Department of Education of Guizhou province (Grant Nos. KY [2016] 009 and KY [2016] 106), the Key Research Program of Frontier Sciences, CAS (Grant Nos. QYZDY-SSW-JSC009 and U1737214), and Provincial Key Disciplines of Chemical Engineering and Technology in Guizhou Province (No. ZDXK[2017] 8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renhui Zhang or Jibin Pu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 13337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhao, J., Pu, J. et al. First-Principles Investigation on the Tribological Properties of h-BN Bilayer Under Variable Load. Tribol Lett 66, 124 (2018). https://doi.org/10.1007/s11249-018-1078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1078-y

Keywords

Navigation