Skip to main content
Log in

Deformation, Wear and Microstructural Evolution of Nano-structured Pearlite Under Repeated Contact Sliding

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Refinement of lamellar spacing down to a few nano-meters in pearlitic steels offers a unique combination of high strength and toughness. The present work pertains to the tribological response of nano-structured pearlitic steels with varying lamellae spacing under repeated frictional sliding using a conical diamond tip. The wear response has been quantified through the friction, volume of groove formed by the indenter and deformation-induced structural changes with number of passes of sliding. Results indicate that the initial microstructure and mechanical properties have a profound impact on the wear resistance since these factors also govern the microstructural adaptability under repeated sliding. The finest lamellar spacing pearlite shows the least wear volume, lowest friction coefficient and the smallest deformation-affected zone.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bramfitt, R., Marder, B.L.: The effect of morphology on the strength of pearlite. Metall. Trans. A. 7, 365–372 (1976). https://doi.org/10.1007/BF02642832

    Article  Google Scholar 

  2. Hyzak, J.M., Bernstein, I.M.: The role of microstructure on the strength and toughness of fully pearlitic steels. Metall. Trans. A. 7, 1217–1224 (1976). https://doi.org/10.1007/BF02656606

    Article  Google Scholar 

  3. Bae, C.M., Lee, C.S., Nam, W.J.: Effect of carbon content on mechanical properties of fully pearlitic steels. Mater. Sci. Technol. 18, 1317–1321 (2002). https://doi.org/10.1179/026708302225007556

    Article  Google Scholar 

  4. Fucheng, Y.Z., Zhang, Bo, L.V., Shuo Liu, Zhinan, Y.A.N.G., Wang, M.: Nano-pearlite rail and process for manufacturing same (2015). https://www.google.com/patents/US20150368765

  5. Liu, S., Zhang, F., Yang, Z., Wang, M., Zheng, C.: Effects of Al and Mn on the formation and properties of nanostructured pearlite in high-carbon steels. Mater. Des. 93, 73–80 (2016). https://doi.org/10.1016/j.matdes.2015.12.134

    Article  Google Scholar 

  6. Aghazadeh Mohandesi, J., Saadatmand, M.: The optimization of interlamellar spacing in a nanopearlitic lead-patented hypoeutectoid steel wire. J. Mater. Eng. Perform. 20, 1467–1473 (2011). https://doi.org/10.1007/s11665-010-9782-2

    Article  Google Scholar 

  7. Izotov, V.I., Pozdnyakov, V.A., Luk’yanenko, E.V., Usanova, O.Y., Filippov, G.A.: Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel. Phys. Met. Metallogr. 103, 519–529 (2007). https://doi.org/10.1134/S0031918X07050122

    Article  Google Scholar 

  8. Jaramillo, R.A., Babu, S.S., Ludtka, G.M., Kisner, R.A., Wilgen, J.B., Mackiewicz-Ludtka, G., Nicholson, D.M., Kelly, S.M., Murugananth, M., Bhadeshia, H.K.D.H.: Effect of 30 T magnetic field on transformations in a novel bainitic steel. Scr. Mater. 52, 461–466 (2005). https://doi.org/10.1016/j.scriptamat.2004.11.015

    Article  Google Scholar 

  9. Minor Honjo, T., Kimura, S., Suzuki, K., Nishimura, S., Mitao, Internal high hardness type pearlitic rail with excellent wear resistance and rolling contact fatigue resistance and method for producing same (2011). https://patents.google.com/patent/US7955445B2/en

  10. Wu, K.M., Bhadeshia, H.K.D.H.: Extremely fine pearlite by continuous cooling transformation. Scr. Mater. 67, 53–56 (2012). https://doi.org/10.1016/j.scriptamat.2012.03.019

    Article  Google Scholar 

  11. Sadeghpour, S.: Developing very fine nanopearlitic structure in a high carbon steel wire before drawing. Int. J. Iron Steel Soc. Iran. 8(2), 1–4 (2011). http://journal.issiran.com/article_6500.html

  12. Makarov, A.V., Schastlivtsev, V.M., Tabatchikova, T.I., Osintseva, A.L., Yakovleva, I.L., Egorova, L.Yu.: Effect of silicon on the wear resistance of high-carbon steels with the structures of isothermal decomposition of austenite during friction and abrasive action. Russ. Metall. 4, 296–302 (2011). https://doi.org/10.1134/S0036029511040100

    Article  Google Scholar 

  13. Rastegari, H., Kermanpur, A., Najafizadeh, A.: Investigating the effects of short time austenitizing and cooling rate on pearlitic microstructure and mechanical properties of a hot rolled plain eutectoid carbon steel. Mater. Des. 67, 217–223 (2015). https://doi.org/10.1016/j.matdes.2014.11.038

    Article  Google Scholar 

  14. Das Bakshi, S., Leiro, A., Prakash, B., Bhadeshia, H.K.D.H.: Dry rolling/sliding wear of nanostructured pearlite. Mater. Sci. Technol. 31(14), 1735–1744 (2015). https://doi.org/10.1179/1743284714Y.0000000751

    Article  Google Scholar 

  15. Aniołek, K., Herian, J.: The structure, properties and a resistance to abrasive wear of railway sections of steel with a different pearlite morphology. IOP Conf. Ser. Mater. Sci. Eng. 22, 12012 (2011). https://doi.org/10.1088/1757-899X/22/1/012012

    Article  Google Scholar 

  16. Kalousek, J., Fegredo, D.M., Laufer, E.E.: The wear resistance and worn metallography of pearlite, bainite and tempered martensite rail steel microstructures of high hardness. Wear. 105, 199–222 (1985). https://doi.org/10.1016/0043-1648(85)90068-7

    Article  Google Scholar 

  17. Clayton, P., Danks, D.: Effect of interlamellar spacing on the wear resistance of eutectoid steels under rolling-sliding conditions. Wear. 135, 369–389 (1990). https://doi.org/10.1016/0043-1648(90)90037-B

    Article  Google Scholar 

  18. Garnham, J.E., Beynon, J.H.: Dry rolling-sliding wear of bainitic and pearlitic steels. Wear. 157, 81–109 (1992). https://doi.org/10.1016/0043-1648(92)90189-F

    Article  Google Scholar 

  19. Katsuki, F., Yonemura, M.: Subsurface characteristics of an abraded Fe-0.4 wt% C pearlitic steel: a nanoindentation study. Wear. 263, 1575–1578 (2007). https://doi.org/10.1016/j.wear.2007.01.092

    Article  Google Scholar 

  20. Perez-Unzueta, A.J., Beynon, J.H., Microstructure and wear resistance of pearlitic rail steels. Wear. (1993). https://doi.org/10.1016/0043-1648(93)90498-B

    Google Scholar 

  21. Yokoyama, H., Mitao, S., Takemasa, M., Development of high strength pearlitic steel rail (SP rail) with excellent wear and damage resistance, NKK TECHNICAL REPORT-JAPANESE EDITION-, 59–64. (2002). http://www.jfe-steel.co.jp/archives/en/nkk_giho/86/pdf/86_01.pdf

  22. Takahashi, J., Kobayashi, Y., Ueda, M., Miyazaki, T., Kawakami, K.: Nanoscale characterisation of rolling contact wear surface of pearlitic steel. Mater. Sci. Technol. 29, 1212–1218 (2013). https://doi.org/10.1179/1743284713Y.0000000256

    Article  Google Scholar 

  23. Takahashi, T., Nagumo, M.: Flow stress and work-hardening of pearlitic steel. Trans. Jpn. Inst. Met. 11, 113–119 (1970). https://doi.org/10.2320/matertrans1960.11.113

    Article  Google Scholar 

  24. Kavishe, F.P.L., Baker, T.J.: Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel. Mater. Sci. Technol. 2, 816–822 (1986). https://doi.org/10.1179/mst.1986.2.8.816

    Article  Google Scholar 

  25. Mishra, K., Singh, A.: Effect of interlamellar spacing on fracture toughness of nano-structured pearlite. Mater. Sci. Eng. A. 706, 22–26 (2017). https://doi.org/10.1016/j.msea.2017.08.115

    Article  Google Scholar 

  26. Kavishe, F.P.L., Baker, T.J., Cleavage fracture in a eutectoid and hypoeutectoid steel, in the issue ECF6, Amsterdam (1986)

  27. Kavishe, F.P.L., Baker, T.J.: Micromechanism of cleavage fracture in fully pearlitic steels. Mater. Sci. Technol. 2, 583–588 (1986). https://doi.org/10.1179/mst.1986.2.6.583

    Article  Google Scholar 

  28. Das Bakshi, S., Shipway, P.H., Bhadeshia, H.K.D.H.: Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear. 308, 46–53 (2013). https://doi.org/10.1016/j.wear.2013.09.008

    Article  Google Scholar 

  29. Clayton, P., Devanathan, R.: Rolling/sliding wear behavior of a chromium-molybdenum rail steel in pearlitic and bainitic conditions. Wear. 156, 121–131 (1992). https://doi.org/10.1016/0043-1648(92)90148-2

    Article  Google Scholar 

  30. Fegredo, D.M., Pritchard, C.: A metallographic examination of rollers subjected to wear under rolling-sliding conditions. Wear. 49, 67–78 (1978). https://doi.org/10.1016/0043-1648(78)90024-8

    Article  Google Scholar 

  31. <bib id="bib31">Ramalho, M., Esteves, P., Marta: Friction and wear behaviour of rolling-sliding steel contacts. Wear. 302, 1468–1480 (2013). https://doi.org/10.1016/j.wear.2012.12.008

    Article  Google Scholar 

  32. Clayton, P.: The relations between wear behaviour and basic material properties for pearlitic steels. Wear. 60, 75–93 (1980). https://doi.org/10.1016/0043-1648(80)90250-1

    Article  Google Scholar 

  33. Yamada, T.: Rolling wear characteristics of annealed carbon steels under dry contact conditions. Wear. 51, 279–288 (1978). https://doi.org/10.1016/0043-1648(78)90266-1

    Article  Google Scholar 

  34. Tyfour, W.R., Beynon, J.H., Kapoor, A.: The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions. Wear. 180, 79–89 (1995). https://doi.org/10.1016/0043-1648(94)06533-0

    Article  Google Scholar 

  35. Zhang, H.W., Ohsaki, S., Mitao, S., Ohnuma, M., Hono, K.: Microstructural investigation of white etching layer on pearlite steel rail. Mater. Sci. Eng. A. 421, 191–199 (2006). https://doi.org/10.1016/j.msea.2006.01.033

    Article  Google Scholar 

  36. Newcomb, S.B., Stobbs, W.M.: A transmission electron microscopy study of the white-etching layer on a rail head. Mater. Sci. Eng. 66, 195–204 (1984). https://doi.org/10.1016/0025-5416(84)90180-0

    Article  Google Scholar 

  37. R.F.Mehl and Hagel, W.C.: The austenite: pearlite reaction. Progr. Met. Phys. 6, 74–134 (1956). https://doi.org/10.1016/0502-8205(56)90005-3

    Article  Google Scholar 

  38. Underwood, E.E.: Quantitative Stereology. Addison–Wesley Publication Company, Boston (1970)

    Google Scholar 

  39. Pandit, A.S., Theory of the pearlite transformation in steels. Doctoral dissertation, University of Cambridge (2011)

  40. Porter, D.A., Easterling, K.E., Smith, G.D.W.: Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 26, 1405–1422 (1978). https://doi.org/10.1016/0001-6160(78)90156-6

    Article  Google Scholar 

  41. Jones, C.P., Tyfour, W.R., Beynon, J.H., Kapoor, A., The effect of strain hardening on shakedown limits of a pearlitic rail steel. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 211, 131–140 (1997). https://doi.org/10.1243/0954409971530978

    Article  Google Scholar 

  42. Baumann, G., Fecht, H.J., Liebelt, S.: Formation of white-etching layers on rail treads. Wear. 191, 133–140 (1996). https://doi.org/10.1016/0043-1648(95)06733-7

    Article  Google Scholar 

  43. Osterle, W., Rooch, H., Pyzalla, A., Wang, L.: Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction. Mater. Sci. Eng. A. 303, 150–157 (2001). https://doi.org/10.1016/S0921-5093(00)01842-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Industrial Research and Consultancy Centre (IRCC), Indian Institute of Technology, Bombay. We also appreciate the provision of laboratory facilities by the Centre of Excellence in Steels (CoEST) and funding from Infrastructure in Science and Technology (SR/FST/ETII-023/2012(C)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K., Pachauri, A. & Singh, A. Deformation, Wear and Microstructural Evolution of Nano-structured Pearlite Under Repeated Contact Sliding. Tribol Lett 66, 109 (2018). https://doi.org/10.1007/s11249-018-1064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1064-4

Keywords

Navigation