Skip to main content
Log in

Dynamic Deformation of Metastable Austenitic Stainless Steels at the Nanometric Length Scale

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cyclic indentation was used to evaluate the dynamic deformation on metastable steels, particularly in an austenitic stainless steel, AISI 301LN. In this work, cyclic nanoindentation experiments were carried out and the obtained loading-unloading (or P-h) curves were analyzed in order to get a deeper knowledge on the time-dependent behavior, as well as the main deformation mechanisms. It was found that the cyclic P-h curves present a softening effect due to several repeatable features (pop-in events, ratcheting effect, etc.) mainly related to dynamic deformation. Also, observation by transmission electron microscopy highlighted that dislocation pile-up is the main responsible of the secondary pop-ins produced after certain cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Spencer, J. D. Embury, K. T. Conlon, M. Véron and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 873-881.

    Article  Google Scholar 

  2. Y. H. Kim, K. Y. Kim and Y. D. Lee: Mater. Manuf. Process., 2004, vol. 19, pp. 51-59.

    Article  CAS  Google Scholar 

  3. K. H. Lo, C. H. Shek and J. K. L. Lai: Mater. Sci. Eng. R: 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  4. Z. G. Hu, P. Zhu and M. Jin: Mater. Design: 2010, vol. 31, pp. 2884-2890.

    Article  CAS  Google Scholar 

  5. A. S. Hamada, L. P. Karjalainen, P. K. C. V. Surya and R. D. K. Misra: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3890-3896.

    Article  Google Scholar 

  6. G. R. Chanani and S. D. Antolovich: Metall. Trans., 1974, vol. 5, pp. 217-229.

    CAS  Google Scholar 

  7. T. B. Hilditch, I. B. Timokhina, L. T. Robertson, E. V. Pereloma and P. D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40, pp. 342-353.

    Article  CAS  Google Scholar 

  8. L. T. Robertson, T. B. Hilditch and P. D. Hodgson: Int. J. Fatigue, 2008, vol. 30, pp. 587-594.

    Article  CAS  Google Scholar 

  9. K. I. Sugimoto, M. Kobayashi and S. I. Yasuki: Metall. Mater. Trans. A, 1997, vol. 28, pp. 2637-2644.

    Article  CAS  Google Scholar 

  10. K. I. Sugimoto, S. M. Song, K. Inoue, M. Kobayashi and S. Masuda: J. Soc. Mater. Sci., 2001, vol. 50, pp. 657-664.

    Article  CAS  Google Scholar 

  11. T. Nebel and D. Eifler: Sadhana-Acad. Proc.Eng. Sci., 2003, vol. 28, pp. 187-208.

    CAS  Google Scholar 

  12. J. J. Roa, G. Fargas, E. Jiménez-Piqué and A. Mateo: Mat. Sci. Eng. A, 2014, vol. 597, pp. 232-236.

    Article  CAS  Google Scholar 

  13. A. Amini, C. Cheng, Q. Kan, M. Naebe and H. Song: Sci. Rep., 2013, vol. 3, pp. 3412-3412.

    Google Scholar 

  14. A. Amini, C. Cheng and A. Asgari: Mater. Lett., 2013, vol. 105, pp. 98-101.

    Article  CAS  Google Scholar 

  15. H. S. Zhang and L. Konvopoulos: J. Mater. Sci., 2006, vol. 41, pp. 5021-5024.

    Article  CAS  Google Scholar 

  16. M. Arciniegas, Y. Gaillard, J. Peña, J. M. Manero and F. J. Gil: Intermetallics, 2009, vol. 17, pp. 784-791.

    Article  CAS  Google Scholar 

  17. M. Carmine, N. Fabrizio, S. Emanuele and F. Franco: Mat. Sci. Eng. A, 2017, vol. 684, pp. 335-343.

    Article  CAS  Google Scholar 

  18. N. H. Faisal, A. K. Prathuru, S. Goel, R. Ahmed, M. G. Droubi, B. D. Beake and Y. Q. Fu: Shap. Mem. Superelasticity, 2017, vol. 3, pp. 149-167.

    Article  Google Scholar 

  19. F. Yang, L. Peng and K. Okazaki: J. Mater. Sci., 2007, vol. 42, pp. 4513-4520.

    Article  CAS  Google Scholar 

  20. W. C. Oliver and G. M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-1583.

    Article  CAS  Google Scholar 

  21. F. Yoshida: Int. J. Press. Vessel. Pip., 1990, vol. 44, pp. 207-223.

    Article  Google Scholar 

  22. E. Krempl: J. Mech. Phys. Solids, 1979, vol. 27, pp. 363-375.

    Article  CAS  Google Scholar 

  23. N. Ohno and M. Abdel-Karim: J. Eng. Mater. Technol., 2000, vol. 122, pp. 35-41.

    Article  CAS  Google Scholar 

  24. G. Kang, N. Ohno and A. Nebu: Int. J. Plast., 2003, vol. 19, pp. 1801-1819.

    Article  CAS  Google Scholar 

  25. K. Dutta, S. Sivapradad, S. Tarfder and K. K. Ray: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7571-7579.

    Article  Google Scholar 

  26. D. Kujawski, V. Kallianpur and E. Krempl: J. Mech. Phys. Solids, 1980, vol. 28, pp. 129-148.

    Article  CAS  Google Scholar 

  27. E. Krempl and M. B. Ruggles: J. Mech. Phys. Solids, 1990, vol. 38, pp. 587-597.

    Article  Google Scholar 

  28. M. B. Ruggles and E. Krempl: J. Eng. Mater. Technol., 1989, vol. 111, pp. 378-383.

    Article  CAS  Google Scholar 

  29. J. R. Ellis, D. N. Robinson and C. E. Pugh: J. Eng. Mater. Technol., 1983, vol. 105, pp. 250-256.

    Article  Google Scholar 

  30. R. D. K. Mirsa, P. Venkatsurya, K. M. Wu and L. P. Karjalainen: Mater. Sci. Eng. A, 2013, vol. 560, pp. 693-699.

    Article  Google Scholar 

  31. A. C. Fisher-Cripps, Nanoindentation, 2nd ed. New York, United States of America: Springer-Verlag Press; 2004, 3, 9-10

    Book  Google Scholar 

  32. E. Jiménez-Piqué, Y. Gaillard, M. Anglada: Key Eng. Mater., 2007, vol. 333, pp. 107-116.

    Article  Google Scholar 

  33. J. J. Roa, E. Jiménez-Piqué, X. G. Capdevila and M. Segarra: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 1477-1482.

    Article  CAS  Google Scholar 

  34. J. Mueller, K. Durst, D. Amberger and M. Goken: Mater. Sci. Forum, 2006, vol. 503-504, pp. 31-36.

    Article  Google Scholar 

  35. J. C. M. Li and S. N. G. Chu : Scripta Mater., 1979, vol. 13, pp. 1021-1026

    Article  CAS  Google Scholar 

  36. M. G. Wang and A. H. W. Ngan: J. Mater. Res., 2004, vol. 19, pp. 2478-2486.

    Article  CAS  Google Scholar 

  37. T. Ohmura, K. Tsuzaki and F. X. Yin: Steel, Mater. Trans., 2005, vol. 46, pp. 2026-2029.

    Article  CAS  Google Scholar 

  38. T. B. Britton, D. Randman and A. J. Wilkinson: J. Mater. Res., 2009, vol. 24, pp. 607-615.

    Article  CAS  Google Scholar 

  39. T. Ohmura and K. Tsuzaki: J. Mater. Res., 2007, vol. 42, pp. 1728-1732.

    CAS  Google Scholar 

  40. B. Yang and H. Vehoff: Acta Mater., 2007, vol. 55, pp. 849-856.

    Article  CAS  Google Scholar 

  41. S. Tsurekawa, Y. Chihara, K. Tashima, S. Li and P. Lejcek: J. Mater. Sci., 2014, vol. 49, pp. 4698-4704.

    Article  CAS  Google Scholar 

  42. I. Sapezanskaia, J. J. Roa, G. Fargas, M. Turon-Viñas, T. Trifonov, R. Kouitat Njiva, A. Redjaïmia and A. Mateo: Mat. Charact., 2017, vol. 131, pp. 253-260.

    Article  CAS  Google Scholar 

  43. J. C. M. Li and S. N. G. Chu : Scr. Metall., 1979, vol. 13, pp. 1021-1026.

    Article  CAS  Google Scholar 

  44. P. J. Ferreira, J. B. Vander Sande, A. Fortes and A. Kyrolainen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3091-3101.

    Article  CAS  Google Scholar 

  45. J. J. Roa, J. M. Wheeler, T. Trifonov, G. Fargas, A. Mateo, J. Michler and E. Jiménez-Piqué: Mat. Sci. Eng. A, 2015, vol. 647, pp. 51-57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. I. Sapezanskaia would like to thank DOCMASE program for its financial support and J. Säynäjäkangas and A. Kalapudas, from Tornio Research Center Outokumpu (Finland), for providing the steel samples. This work was financially supported by the Spanish Ministerio de Economía y Competitividad (Grant MAT2015-70780-C4-3-P). J.J. Roa acknowledges the Serra Hunter programme of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Roa.

Additional information

Manuscript submitted January 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roa, J.J., Sapezanskaia, I., Fargas, G. et al. Dynamic Deformation of Metastable Austenitic Stainless Steels at the Nanometric Length Scale. Metall Mater Trans A 49, 6034–6039 (2018). https://doi.org/10.1007/s11661-018-4911-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4911-x

Navigation