Skip to main content
Log in

Instantaneous Plane Stress Observation and Numerical Simulation During Wear in an Initial Line Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The photoelastic technique was applied to capture in situ plane stress in a block-on-cylinder contact. This method allows researchers to qualitatively visualize the distribution of principal stress difference during wear processes. Additionally, numerical simulation of the evolution of wear was conducted. The conjugate gradient method together with fast Fourier transform was employed to solve the pressure distribution. Based on the computed pressure, the block wear was solved with Archard’s wear law. The subsurface stress was computed using the influence coefficient method. The simulated results of wear and stress were compared with the experimental results; the similarities and differences between the results highlight the usefulness and limitations of the numerical method. However, the photoelastic technique together with the numerical method casts light on the nature of wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. There is a typo in Eq. (31b) of the reference; it should be pij ← (P0/P) pij.

Abbreviations

d :

Thickness of a birefringence specimen

E * :

Equivalent Young’s modulus,\({1 \mathord{\left/ {\vphantom {1 {{E^*}}}} \right. \kern-0pt} {{E^*}}}={{\left( {1 - \nu _{1}^{2}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - \nu _{1}^{2}} \right)} {{E_1}}}} \right. \kern-0pt} {{E_1}}}+{{\left( {1 - \nu _{2}^{2}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - \nu _{2}^{2}} \right)} {{E_2}}}} \right. \kern-0pt} {{E_2}}}\)

f σ :

Material stress fringe value

G * :

Equivalent shear modulus, \({1 \mathord{\left/ {\vphantom {1 {{G^*}}}} \right. \kern-0pt} {{G^*}}}={{\left( {1 - 2{\nu _1}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - 2{\nu _1}} \right)} {{G_1}}}} \right. \kern-0pt} {{G_1}}} - {{\left( {1 - 2{\nu _2}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - 2{\nu _2}} \right)} {{G_2}}}} \right. \kern-0pt} {{G_2}}}\)

g :

Gap between two contact bodies

g 0 :

Initial gap between two contact bodies

I c :

The set of all nodes that are in contact

I g :

The set of all nodes in the calculation domain

k :

Wear coefficient

p :

Normal pressure distribution

P :

External normal loads

q :

Tangential pressure distribution, q = µp

s :

Total sliding distance

z :

Elastic deformation along the z direction

x, z :

Spatial coordinates

x 1,2 :

Domain of contact

Δh :

Wear depth increment

Δs :

Sliding distance increment

Δx :

The size of one mesh grid

δ :

‘rigid-body’ approach

σ x,z, τ zx :

Stress component

References

  1. Marshall, D.B., Shaw, M.C., Morris, W.L.: Measurement of interfacial debonding and sliding resistance in fiber reinforced intermetallics. Acta Metall. Mater. 40(3), 443–454 (1992). https://doi.org/10.1016/0956-7151(92)90392-R

    Article  Google Scholar 

  2. Hu, Z., Lu, W., Thouless, M.D.: Slip and wear at a corner with Coulomb friction and an interfacial strength. Wear. 338–339, 242–251 (2015). https://doi.org/10.1016/j.wear.2015.06.010

    Article  Google Scholar 

  3. Dally, J.W., Chen, Y.M.: A photoelastic study of friction at multipoint contacts. Exp. Mech. 31(2), 144–149 (1991). https://doi.org/10.1007/BF02327567

    Article  Google Scholar 

  4. Bryant, M.D., Jau-Wen, L.: Photoelastic visualization of contact phenomena between real tribological surfaces, with and without sliding. Wear. 170(2), 267–279 (1993). https://doi.org/10.1016/0043-1648(93)90247-J

    Article  Google Scholar 

  5. Burguete, R.L., Patterson, E.A.: A photoelastic study of contact between a cylinder and a half-space. Exp. Mech. 37(3), 314–323 (1997). https://doi.org/10.1007/BF02317424

    Article  Google Scholar 

  6. Fang, Y., He, J., Huang, P.: Experimental and numerical analysis of soft elastohydrodynamic lubrication in line contact. Tribol. Lett. 65(2), 42 (2017). https://doi.org/10.1007/s11249-017-0825-9

    Article  Google Scholar 

  7. Fernández, M.S.-B., Calderón, J.M.A., Díez, P.M.B., Segura, I.I.C.: Stress-separation techniques in photoelasticity: a review. J. Strain Anal. Eng. Des. 45(1), 1–17 (2009). https://doi.org/10.1243/03093247JSA583

    Article  Google Scholar 

  8. Solaguren-Beascoa Fernández, M.: Data acquisition techniques in photoelasticity. Exp. Tech. 35(6), 71–79 (2011). https://doi.org/10.1111/j.1747-1567.2010.00669.x

    Article  Google Scholar 

  9. Yoneyama, S., Arikawa, S., Kobayashi, Y.: Linear and nonlinear algorithms for stress separation in photoelasticity. Exp. Mech. 52(5), 529–538 (2012). https://doi.org/10.1007/s11340-011-9512-1

    Article  Google Scholar 

  10. Narayanamurthy, C.S., Pedrini, G., Osten, W.: Digital holographic photoelasticity. Appl. Opt. 56(13), F213-F217 (2017). https://doi.org/10.1364/AO.56.00F213

    Article  Google Scholar 

  11. Zhan, W., Huang, P.: Numerical analysis of time-varying wear with elastic deformation in line contact. Friction (2018). https://doi.org/10.1007/s40544-017-0195-1

    Google Scholar 

  12. Andersson, J., Almqvist, A., Larsson, R.: Numerical simulation of a wear experiment. Wear. 271(11–12), 2947–2952 (2011). https://doi.org/10.1016/j.wear.2011.06.018

    Article  Google Scholar 

  13. Meng, H., Ludema, K.: Wear models and predictive equations: their form and content. Wear. 181, 443–457 (1995). https://doi.org/10.1016/0043-1648(95)90158-2

    Article  Google Scholar 

  14. Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  15. Hegadekatte, V., Huber, N., Kraft, O.: Finite element based simulation of dry sliding wear. Modell. Simul. Mater. Sci. Eng. 13(1), 57–75 (2004). https://doi.org/10.1088/0965-0393/13/1/005

    Article  Google Scholar 

  16. Mukras, S., Kim, N.H., Sawyer, W.G., Jackson, D.B., Bergquist, L.W.: Numerical integration schemes and parallel computation for wear prediction using finite element method. Wear. 266(7), 822–831 (2009). https://doi.org/10.1016/j.wear.2008.12.016

    Article  Google Scholar 

  17. Hu, Z., Lu, W., Thouless, M.D., Barber, J.R.: Simulation of wear evolution using fictitious eigenstrains. Tribol. Int. 82, 191–194 (2015). https://doi.org/10.1016/j.triboint.2014.10.015

    Article  Google Scholar 

  18. Arjmandi, M., Ramezani, M., Giordano, M., Schmid, S.: Finite element modelling of sliding wear in three-dimensional woven textiles. Tribol. Int. 115, 452–460 (2017). https://doi.org/10.1016/j.triboint.2017.06.015

    Article  Google Scholar 

  19. Flodin, A., Andersson, S.: Simulation of mild wear in spur gears. Wear. 207(1–2), 16–23 (1997). https://doi.org/10.1016/S0043-1648(96)07467-4

    Article  Google Scholar 

  20. Põdra, P., Andersson, S.: Wear simulation with the Winkler surface model. Wear. 207(1), 79–85 (1997). https://doi.org/10.1016/S0043-1648(96)07468-6

    Article  Google Scholar 

  21. Sfantos, G., Aliabadi, M.: Wear simulation using an incremental sliding boundary element method. Wear. 260(9), 1119–1128 (2006). https://doi.org/10.1016/j.wear.2005.07.020

    Article  Google Scholar 

  22. Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear. 231(2), 206–219 (1999). https://doi.org/10.1016/S0043-1648(99)00113-1

    Article  Google Scholar 

  23. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  24. Theocaris, P.S., Gdoutos, E.E.: Matrix theory of photoelasticity, vol. 11. Springer, Berlin (1979)

    Google Scholar 

  25. Lei, Z., Yun, H., Zhao, Y., Pan, X.: Automatic determination of fringe constant in digital photoelasticity. Eng. Mech. 26(12), 40–45 (2009)

    Google Scholar 

  26. Zhan, W., Huang, P.: Numerical analysis of elastic wear in line contact. J. South China Univ. Technol. 45(5), 45–51 (2017). https://doi.org/10.3969/j.issn.1000-565X.2017.05.007

    Google Scholar 

  27. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature. 457(7233), 1116–1119 (2009). https://doi.org/10.1038/nature07748

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 51575190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanglong Zhan.

Appendices

Appendix A

The surface deflection distribution produced by a given contact pressure p(x) is shown in Eq. (1). As the ‘rigid-body’ approach δ in Eq. (5) can be determined based on the load balance condition, the constant C in Eq. (1) can be merged with it. Equation (1) can be expressed as the Green function:

$$u= - \int_{{{I_g}}} {K\left( {x - x^{\prime}} \right)p\left( {x^{\prime}} \right){\text{d}}{\kern 1pt} x^{\prime}} ,$$
(A.1)

where Ig is the grid area and K(x) represents the surface displacement distribution produced by a unit concentrated normal force acting at the origin. Comparing Eq. (A.1) with (1), the kernel K(x) is given by

$$K\left( x \right)=\frac{2}{{\pi {E^*}}}\ln \left| x \right|+\frac{\mu }{{2{G^*}}}H\left( x \right),$$
(A.2)

where H(x) is the Heaviside step function. Under the assumption of stepwise constant distribution of contact pressure, the influence coefficient Kij is given by

$${K_{i - j}}=\int_{{{x_j} - {{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} 2}} \right. \kern-0pt} 2}}}^{{{x_j}+{{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} 2}} \right. \kern-0pt} 2}}} {\frac{2}{{\pi {E^*}}}\ln \left| {x^{\prime} - {x_i}} \right|+\frac{\mu }{{2{G^*}}}H\left( {x^{\prime} - {x_i}} \right){\text{d}}{\kern 1pt} x^{\prime}} .$$
(A.3)

Integrating Eq. (A.3) yields an explicit formula for Kij, which can be expressed as

$${K_{i - j}}=\frac{2}{{\pi {E^*}}}\left[ {f\left( {\left| {{x_i} - {x_j}} \right|+{{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} 2}} \right. \kern-0pt} 2}} \right) - f\left( {\left| {{x_i} - {x_j}} \right| - {{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} 2}} \right. \kern-0pt} 2}} \right)} \right]+\frac{{\mu \Delta x}}{{2{G^*}}}H\left( {{x_j} - {x_i}} \right),$$
(A.4)

where \(f\left( x \right)=x\left( {\ln \left| x \right| - 1} \right)\).

Appendix B

$$\begin{gathered} N_{{i - j}}^{{rs}}\left( {{z_k}} \right)={n^{rs}}\left( {{x_i} - {x_j}+\Delta x/2,{z_k}} \right) - {n^{rs}}\left( {{x_i} - {x_j} - \Delta x/2,{z_k}} \right) \hfill \\ T_{{i - j}}^{{rs}}\left( {{z_k}} \right)={t^{rs}}\left( {{x_i} - {x_j}+\Delta x/2,{z_k}} \right) - {t^{rs}}\left( {{x_i} - {x_j} - \Delta x/2,{z_k}} \right), \hfill \\ \end{gathered}$$
(B.1)

where

$$\begin{gathered} {n^{xx}}\left( {x,z} \right)=\frac{1}{\pi }\left[ {\frac{{xz}}{{{x^2}+{z^2}}} - \arctan \left( {\frac{x}{z}} \right)} \right] \hfill \\ {n^{zz}}\left( {x,z} \right)=\frac{1}{\pi }\left[ { - \frac{{xz}}{{{x^2}+{z^2}}} - \arctan \left( {\frac{x}{z}} \right)} \right] \hfill \\ {n^{xz}}\left( {x,z} \right)=\frac{1}{\pi }\frac{{{z^2}}}{{{x^2}+{z^2}}} \hfill \\ {t^{xx}}\left( {x,z} \right)=\frac{1}{\pi }\left[ { - \frac{{{z^2}}}{{{x^2}+{z^2}}} - \ln \left( {{x^2}+{z^2}} \right)} \right] \hfill \\ {t^{zz}}\left( {x,z} \right)=\frac{1}{\pi }\frac{{{z^2}}}{{{x^2}+{z^2}}} \hfill \\ {t^{xz}}\left( {x,z} \right)=\frac{1}{\pi }\left[ {\frac{{xz}}{{{x^2}+{z^2}}} - \arctan \left( {\frac{x}{z}} \right)} \right]. \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, W., Fang, Y., Van Hoang, C. et al. Instantaneous Plane Stress Observation and Numerical Simulation During Wear in an Initial Line Contact. Tribol Lett 66, 90 (2018). https://doi.org/10.1007/s11249-018-1042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1042-x

Keywords

Navigation