Skip to main content
Log in

Synthesis and Tribological Performance of Carbon Nanostructures Formed on AISI 316 Stainless Steel Substrates

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Carbon nanostructures were directly grown onto standard AISI 316 stainless steel by spray pyrolysis of α-pinene, a biorenewable material. Two different nanostructures were formed: (1) multi-walled carbon nanotubes when using ferrocene as an external catalyst mixed with α-pinene and (2) ribbon carbon nanofibers when using only α-pinene. In both cases, homogeneous layers of carbon nanostructures randomly distributed and completely covering the metal substrate were observed. Carbon nanotube films were thicker (~230 μm) than carbon nanofiber films (~180 μm). A significant friction reduction was observed for both structures; however, carbon nanofibers displayed a lower friction coefficient (~0.15) than carbon nanotubes (~0.20) at 5 N of load for 200 and 2000 cycles. Scanning electron microscopy and Raman spectroscopy analyses of the wear tracks reveal that, upon rubbing, both carbon nanostructures experienced the removal of stacking faults developing large, parallel and smooth graphene layers with low interfacial shear strength which may account for the friction reduction and wear protection observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park, S.J., Lee, D.G.: Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes. Carbon 44(10), 1930–1935 (2006)

    Article  Google Scholar 

  2. Parthangal, P.M., Cavicchi, R.E., Zachariah, M.R.: A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18(18), 185605 (2007)

    Article  Google Scholar 

  3. Camilli, L., Scarselli, M., Del Gobbo, S., Castrucci, P., Nanni, F., Gautron, E., Lefrant, S., De Crescenzi, M.: The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst. Carbon 49(10), 3307–3315 (2011)

    Article  Google Scholar 

  4. Hordy, N., Mendoza-Gonzalez, N.-Y., Coulombe, S., Meunier, J.-L.: The effect of carbon input on the morphology and attachment of carbon nanotubes grown directly from stainless steel. Carbon 63, 348–357 (2013)

    Article  Google Scholar 

  5. Kim, B., Chung, H., Chu, K.S., Yoon, H.G., Lee, C.J., Kim, W.: Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth. Metals 160(7), 584–587 (2010)

    Article  Google Scholar 

  6. Hashempour, M., Vicenzo, A., Zhao, F., Bestetti, M.: Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: effect of surface nano-features on CNT growth and structure. Carbon 63, 330–347 (2013)

    Article  Google Scholar 

  7. Romero, P., Oro, R., Campos, M., Torralba, J.M., de Villoria, R.G.: Simultaneous synthesis of vertically aligned carbon nanotubes and amorphous carbon thin films on stainless steel. Carbon 82, 31–38 (2015)

    Article  Google Scholar 

  8. Masarapu, C., Wei, B.: Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates. Langmuir 23(17), 9046–9049 (2007)

    Article  Google Scholar 

  9. Ionescu, M.I., Zhang, Y., Li, R., Sun, X., Abou-Rachid, H., Lussier, L.-S.: Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Appl. Surf. Sci. 257(15), 6843–6849 (2011)

    Article  Google Scholar 

  10. Vander Wal, R.L., Hall, L.J.: Carbon nanotube synthesis upon stainless steel meshes. Carbon 41(4), 659–672 (2003)

    Article  Google Scholar 

  11. Reinert, L., Suárez, S., Rosenkranz, A.: Tribo-mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and CNT-coated bulk nickel. Lubricants 4(2), 11 (2016)

    Article  Google Scholar 

  12. Kumar, R., Tiwari, R.S., Srivastava, O.N.: Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res. Lett. 6(1), 1–6 (2011)

    Google Scholar 

  13. Ghosh, P., Afre, R.A., Soga, T., Jimbo, T.: A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mater. Lett. 61(17), 3768–3770 (2007)

    Article  Google Scholar 

  14. TermehYousefi, A., Bagheri, S., Shinji, K., Rouhi, J., Rusop Mahmood, M., Ikeda, S.: Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material. BioMed Res. Int. 2014, Article ID 691537 (2014)

  15. Zobir, S.A.M., Bakar, S.A., Abdullah, S., Zainal, Z., Sarijo, S.H., Rusop, M.: Raman spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm olein-chemical vapour deposition. J. Nanomater. 2012, Article ID 451473 (2012)

  16. Suriani, A.B., Azira, A.A., Nik, S.F., Nor, R.M., Rusop, M.: Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett. 63(30), 2704–2706 (2009)

    Article  Google Scholar 

  17. Awasthi, K., Kumar, R., Raghubanshi, H., Awasthi, S., Pandey, R., Singh, D., Yadav, T., Srivastava, O.: Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull. Mater. Sci. 34(4), 607–614 (2011)

    Article  Google Scholar 

  18. Azmina, M.S., Suriani, A.B., Salina, M., Azira, A.A., Dalila, A.R., Asli, N.A., Rosly, J., Nor, R.M., Rusop, M.: Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. Nano Hybrids 2, 43–63 (2012)

    Article  Google Scholar 

  19. Afre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M.: Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: turpentine oil. Chem. Phys. Lett. 414(1), 6–10 (2005)

    Article  Google Scholar 

  20. Afre, R.A., Soga, T., Jimbo, T., Kumar, M., Ando, Y., Sharon, M., Somani, P.R., Umeno, M.: Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous Mesoporous Mater. 96(1), 184–190 (2006)

    Article  Google Scholar 

  21. Ghosh, P., Soga, T., Afre, R.A., Jimbo, T.: Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: turpentine oil. J. Alloys Compd. 462(1), 289–293 (2008)

    Article  Google Scholar 

  22. Ghosh, P., Soga, T., Ghosh, K., Afre, R.A., Jimbo, T., Ando, Y.: Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene. J. Noncryst. Solids 354(34), 4101–4106 (2008)

    Article  Google Scholar 

  23. Lara-Romero, J., Alonso-Núñez, G., Jiménez-Sandoval, S., Avalos-Borja, M.: Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene. J. Nanosci. Nanotechnol. 8(12), 6509–6512 (2008)

    Google Scholar 

  24. Alonso-Nunez, G., Lara-Romero, J., Paraguay-Delgado, F., Sanchez-Castaneda, M., Jiménez-Sandoval, S.: Temperature optimisation of CNT synthesis by spray pyrolysis of alpha-pinene as the carbon source. J. Exp. Nanosci. 5(1), 52–60 (2010)

    Article  Google Scholar 

  25. Lara-Romero, J., Calva-Yanez, J., Lopez-Tinoco, J., Alonso-Nunez, G., Jimenez-Sandoval, S., Paraguay-Delgado, F.: Temperature effect on the synthesis of multi-walled carbon nanotubes by spray pyrolysis of botanical carbon feedstocks: turpentine, α-pinene and β-pinene. Fuller. Nanotub. Carbon Nanostruct. 19(6), 483–496 (2011)

    Article  Google Scholar 

  26. Salvetat, J.-P., Bonard, J.-M., Thomson, N., Kulik, A., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69(3), 255–260 (1999)

    Article  Google Scholar 

  27. Cui, L.-J., Geng, H.-Z., Wang, W.-Y., Chen, L.-T., Gao, J.: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54, 277–282 (2013)

    Article  Google Scholar 

  28. Yousef, S., Khattab, A., Zaki, M., Osman, T.: Wear characterization of carbon nanotubes reinforced polymer gears. IEEE Trans. Nanotechnol. 12(4), 616–620 (2013)

    Article  Google Scholar 

  29. Wang, H., Chang, L., Yang, X., Yuan, L., Ye, L., Zhu, Y., Harris, A.T., Minett, A.I., Trimby, P., Friedrich, K.: Anisotropy in tribological performances of long aligned carbon nanotubes/polymer composites. Carbon 67, 38–47 (2014)

    Article  Google Scholar 

  30. Kingston, C., Zepp, R., Andrady, A., Boverhof, D., Fehir, R., Hawkins, D., Roberts, J., Sayre, P., Shelton, B., Sultan, Y.: Release characteristics of selected carbon nanotube polymer composites. Carbon 68, 33–57 (2014)

    Article  Google Scholar 

  31. Li, Z., Wang, X., Wang, M., Wang, F., Ge, H.: Preparation and tribological properties of the carbon nanotubes–Ni–P composite coating. Tribol. Int. 39(9), 953–957 (2006)

    Article  Google Scholar 

  32. Arai, S., Fujimori, A., Murai, M., Endo, M.: Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater. Lett. 62(20), 3545–3548 (2008)

    Article  Google Scholar 

  33. Kim, D.-E., Kim, C.-L., Kim, H.-J.: A novel approach to wear reduction of micro-components by synthesis of carbon nanotube-silver composite coating. CIRP Ann. Manuf. Technol. 60(1), 599–602 (2011)

    Article  Google Scholar 

  34. Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25(3), 247–253 (2007)

    Article  Google Scholar 

  35. Lu, H.F., Fei, B., Xin, J.H., Wang, R.H., Li, L., Guan, W.C.: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon 45(5), 936–942 (2007)

    Article  Google Scholar 

  36. Pei, X., Hu, L., Liu, W., Hao, J.: Synthesis of water-soluble carbon nanotubes via surface initiated redox polymerization and their tribological properties as water-based lubricant additive. Eur. Polym. J. 44(8), 2458–2464 (2008)

    Article  Google Scholar 

  37. Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J., Mieno, T.: Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 37(11), 1013–1018 (2004)

    Article  Google Scholar 

  38. Yu, B., Liu, Z., Zhou, F., Liu, W., Liang, Y.: A novel lubricant additive based on carbon nanotubes for ionic liquids. Mater. Lett. 62(17), 2967–2969 (2008)

    Article  Google Scholar 

  39. Wang, B., Wang, X., Lou, W., Hao, J.: Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes. J. Phys. Chem. C 114(19), 8749–8754 (2010)

    Article  Google Scholar 

  40. Kinoshita, H., Kume, I., Tagawa, M., Ohmae, N.: High friction of a vertically aligned carbon-nanotube film in microtribology. Appl. Phys. Lett. 85(14), 2780–2781 (2004)

    Article  Google Scholar 

  41. Miyoshi, K., Street Jr., K., Vander Wal, R., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19(3), 191–201 (2005)

    Article  Google Scholar 

  42. Dickrell, P., Sinnott, S., Hahn, D., Raravikar, N., Schadler, L., Ajayan, P., Sawyer, W.: Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett. 18(1), 59–62 (2005)

    Article  Google Scholar 

  43. Hu, J., Jo, S., Ren, Z., Voevodin, A., Zabinski, J.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19(2), 119–125 (2005)

    Article  Google Scholar 

  44. Abad, M., Sánchez-López, J.C., Berenguer-Murcia, A., Golovko, V., Cantoro, M., Wheatley, A., Fernández, A., Johnson, B., Robertson, J.: Catalytic growth of carbon nanotubes on stainless steel: characterization and frictional properties. Diam. Relat. Mater. 17(11), 1853–1857 (2008)

    Article  Google Scholar 

  45. Martin-Gullon, I., Vera, J., Conesa, J.A., González, J.L., Merino, C.: Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 44(8), 1572–1580 (2006)

    Article  Google Scholar 

  46. Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Article  Google Scholar 

  47. Donato, M., Galvagno, S., Messina, G., Milone, C., Pistone, A., Santangelo, S.: Optimisation of gas mixture composition for the preparation of high quality MWCNT by catalytically assisted CVD. Diam. Relat. Mater. 16(4), 1095–1100 (2007)

    Article  Google Scholar 

  48. Peterson, M.B., Ramalingam, S.: Coatings for tribological applications. In: Rigney, D.A. (ed.) Fundamentals of Friction and Wear of Materials, pp. 331–372. American Society for Metals, Metals Park, OH (1981)

    Google Scholar 

  49. Tu, J., Jv, Y., Xia, Z., Guo, S.: Friction properties of array films of amorphous carbon nanorods prepared by dual-catalyst growth on porous AAO membrane. In: World Tribology Congress III, vol. 2, pp. 353–354. American Society of Mechanical Engineers (2005)

  50. Tu, J., Jiang, C., Guo, S., Zhao, X., Fu, M.: Tribological properties of aligned film of amorphous carbon nanorods on AAO membrane in different environments. Wear 259(1), 759–764 (2005)

    Article  Google Scholar 

  51. Kim, Y., Hayashi, T., Osawa, K., Dresselhaus, M., Endo, M.: Annealing effect on disordered multi-wall carbon nanotubes. Chem. Phys. Lett. 380(3), 319–324 (2003)

    Article  Google Scholar 

  52. Messina, G., Modafferi, V., Santangelo, S., Tripodi, P., Donato, M.G., Lanza, M., Pistone, A.: Large-scale production of high-quality multi-walled carbon nanotubes: role of precursor gas and of Fe-catalyst support. Diam. Relat. Mater. 17(7), 1482–1488 (2008)

    Article  Google Scholar 

  53. Santangelo, S., Messina, G., Faggio, G., Lanza, M., Pistone, A., Milone, C.: Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multi-walled carbon nanotubes. J. Mater. Sci. 45(3), 783–792 (2010)

    Article  Google Scholar 

  54. Mylvaganam, K., Zhang, L., Xiao, K.: Origin of friction in films of horizontally oriented carbon nanotubes sliding against diamond. Carbon 47(7), 1693–1700 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the Mexican National Council for Science and Technology (CONACyT—Proyecto Ciencia Básica 241536) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Lara-Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Martínez, R., Ocampo-Macias, T., Lara-Romero, J. et al. Synthesis and Tribological Performance of Carbon Nanostructures Formed on AISI 316 Stainless Steel Substrates. Tribol Lett 64, 36 (2016). https://doi.org/10.1007/s11249-016-0769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0769-5

Keywords

Navigation