Skip to main content
Log in

Influence of MoS2 on the Rolling Contact Performance of Bearing Steels in Boundary Lubrication: A Different Approach

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Effective lubrication has been achieved under vacuum conditions by employing MoS2 as a solid lubricant. The primary reason for its ability to reduce friction is attributed to its crystal structure, which allows easy shearing of MoS2 layers. This research explores the possibilities of utilizing MoS2 in soluble and insoluble forms to improve the performance of tribological systems. In this study, spherical rolling elements were coated with Ti–MoS2 and their tribological performance was evaluated in a ball-on-rod tribometer operating in boundary-lubricated (PAO ISO 10 oil) conditions. The results of these tests were compared with similar tests performed on uncoated steel specimens using PAO ISO 10 oil with and without a molybdenum dialkyldithiocarbamate (MoDTC) additive. The L50 fatigue lives of M50 rods tested against Ti–MoS2 coated balls were found to be similar to those obtained from tests performed on uncoated steel specimens using oil with MoDTC (1 wt%); that is, the L50 fatigue lives of M50 rods were improved by more than a factor of 2 in both cases. Tribofilms generated on M50 rods during testing with Ti–MoS2 coated balls in neat oil and uncoated balls in MoDTC (1 wt%) mixed oil were observed to be similar. Wear track analysis on M50 rods tested against Ti–MoS2 coated balls indicated that the tribofilms are mixtures of MoS2 and amorphous hydrocarbon (a-C:H). A possible mechanism for the formation of the a-C:H on the counterface is proposed based on the experimental investigations in this study. Further, it is concluded that the Ti–MoS2 coating on the spherical rolling elements functions as an MoS2 additive source to the lubricating oil rather than as a tribological coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  Google Scholar 

  2. Savan, A., Pflüger, E., Voumard, P., Schröer, A., Simmonds, M.: Modern solid lubrication: recent developments and applications of MoS2. Lubr. Sci. 12, 185–203 (2000)

    Article  Google Scholar 

  3. Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)

    Article  Google Scholar 

  4. Khare, H.S., Burris, D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2013)

    Article  Google Scholar 

  5. Mitchell, P.C.H.: Oil-soluble MO-S compounds as lubricant additives. Wear 100, 281–300 (1984)

    Article  Google Scholar 

  6. Wan, G.T.Y., Spikes, H.A.: The behavior of suspended solid particles in rolling and sliding elastohydrodynamic contacts. Tribol. Trans. 31, 12–21 (1988)

    Article  Google Scholar 

  7. Stupp, B.: Synergistic effects of metals co-sputtered with MoS 2. Thin Solid Films 84, 257–266 (1981)

    Article  Google Scholar 

  8. Steinmann, M., Müller, A., Meerkamm, H.: A new type of tribological coating for machine elements based on carbon, molybdenum disulphide and titanium diboride. Tribol. Int. 37, 879–885 (2004)

    Article  Google Scholar 

  9. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., Mcdevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38, 894–904 (1995)

    Article  Google Scholar 

  10. Stoyanov, P., Chromik, R.R., Goldbaum, D., Lince, J.R., Zhang, X.: Microtribological performance of Au–MoS2 and Ti–MoS2 coatings with varying contact pressure. Tribol. Lett. 40, 199–211 (2010)

    Article  Google Scholar 

  11. Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010)

    Article  Google Scholar 

  12. Singh, H., Mutyala, K.C., Mohseni, H., Scharf, T.W., Evans, R.D., Doll, G.L.: Tribological performance and coating characteristics of sputter deposited Ti doped MoS2 in rolling and sliding contact. Tribol. Trans. 58, 767–777 (2015)

    Article  Google Scholar 

  13. Singh, H., Mutyala, K.C., Evans, R.D., Doll, G.L.: An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surf. Coat. Technol. (2015). doi:10.1016/j.surfcoat.2015.05.049

    Google Scholar 

  14. Singh, H., Mutyala, K.C., Mohseni, H., Scharf, T.W., Evans, R.D., Doll, G.L.: Tribological behavior of Ti containing MoS2 in sliding and rolling contact. Tribol. Lubr. Technol. 2, 22–24 (2015)

    Google Scholar 

  15. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)

    Article  Google Scholar 

  16. Muratore, C., Voevodin, A.A.: Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments. Annu. Rev. Mater. Res. 39, 297–324 (2009)

    Article  Google Scholar 

  17. Sliney, H.: Solid lubricant materials for high temperatures—a review. Tribol. Int. 15(5), 303–315 (1982)

    Article  Google Scholar 

  18. Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)

    Article  Google Scholar 

  19. Chhowalla, M., Amaratunga, G.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000)

    Article  Google Scholar 

  20. Rapoport, L., Leshchinky, V., Volovik, Y., Lvovsky, M., Nepomnyashchy, O., Feldman, Y., Popovitz-Biro, R., Tenne, R.: Modification of contact surfaces by fullerine-like solid lubricant nanoparticles. Surf. Coat. Technol. 163–164, 405–412 (2003)

    Article  Google Scholar 

  21. Rabaso, P., Dassenoy, F., Ville, F., Diaby, M., Vacher, B., Le Mogne, T., Belin, M., Cavoret, J.: An investigation on the reduced ability of IF-MoS2 nanoparticles to reduce friction and wear in the presence of dispersants. Tribol. Lett. 55, 503–516 (2014)

    Article  Google Scholar 

  22. Yamamoto, Y., Gondo, S.: Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate. Tribol. Trans. 32, 251–257 (1989)

    Article  Google Scholar 

  23. Unnikrishnan, R., Jain, M., Harinarayan, A., Mehta, A.: Additive–additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 252, 240–249 (2002)

    Article  Google Scholar 

  24. Martin, J., Grossiord, C., Varlot, K.: Synergistic effects in binary systems of lubricant additives : a chemical hardness approach. Tribol. Lett. 8, 193–201 (2000)

    Article  Google Scholar 

  25. Grossiord, C., Varlot, K., Martin, J., Le Mogne, T., Esnouf, C., Inoue, K.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)

    Article  Google Scholar 

  26. Miklozic, K.T., Graham, J., Spikes, H.A.: Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)

    Article  Google Scholar 

  27. Yue, W., Fu, Z., Wang, S., Gao, X., Huang, H., Liu, J.: Tribological synergistic effects between plasma nitrided 52100 steel and molybdenum dithiocarbamates additive in boundary lubrication regime. Tribol. Int. 74, 72–78 (2014)

    Article  Google Scholar 

  28. Graham, J., Spikes, H.A., Jensen, R.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part II—durability of friction reducing capability. Tribol. Trans. 44, 637–647 (2001)

    Article  Google Scholar 

  29. Graham, J., Spikes, H.A., Korcek, S.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part I—factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001)

    Article  Google Scholar 

  30. Jeng, Y., Hwang, S., Fong, Z., Shieh, J.: The effects of adding molybdenum dithiocarbamate additive to a sulfur-phosphorus gear oil on two roller apparatus performance. Lubr. Eng. 58(2), 9–15 (2002)

    Google Scholar 

  31. Bec, S., Tonck, A., Georges, J.M., Roper, G.W.: Synergistic effects of MoDTC and ZDTP on frictional behaviour of tribofilms at the nanometer scale. Tribol. Lett. 17, 797–809 (2004)

    Article  Google Scholar 

  32. Neville, A., Morina, A., Haque, T., Voong, M.: Compatibility between tribological surfaces and lubricant additives-How friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 40, 1680–1695 (2007)

    Article  Google Scholar 

  33. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication-the effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)

    Article  Google Scholar 

  34. Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40, 1696–1704 (2007)

    Article  Google Scholar 

  35. Morina, A., Neville, A.: Tribofilms: aspects of formation, stability and removal. J. Phys. D Appl. Phys. 40, 5476–5487 (2007)

    Article  Google Scholar 

  36. Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180–181, 76–84 (2004)

    Article  Google Scholar 

  37. Mutyala, K.C., Singh, H., Evans, R.D., Doll, G.L.: Deposition, characterization, and performance of tribological coatings on spherical rolling elements. Surf. Coat. Technol. (2015). doi:10.1016/j.surfcoat.2015.06.075

    Google Scholar 

  38. Bunshah, R.F., Deshpandey, C.V.: Plasma assisted physical vapor deposition processes: a review. J. Vac. Sci. Technol. Vac. Surf. Film 3, 553–560 (1985)

    Article  Google Scholar 

  39. Kelly, P.J., Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)

    Article  Google Scholar 

  40. Vidakis, N., Antoniadis, A., Bilalis, N.: The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J. Mater. Process. Technol. 143–144, 481–485 (2003)

    Article  Google Scholar 

  41. Lubrecht, A.A., Venner, C.H., Colin, F.: Film thickness calculation in elasto-hydrodynamic lubricated line and elliptical contacts: the Dowson, Higginson, Hamrock contribution. Proc. Inst. Mech. Eng. Part JJ. Eng. Tribol. 223, 511–515 (2009)

    Article  Google Scholar 

  42. Evans, R.D., Cogdell, J.D., Richter, G.A., Doll, G.L.: Traction of lubricated rolling contacts between thin-film coatings and steel. Tribol. Trans. 52, 106–113 (2008)

    Article  Google Scholar 

  43. Weibull, W.: A statistical distribution function of wide applicability. ASME J. Appl. Mech. 103, 293–297 (1951)

    Google Scholar 

  44. Abernethy, R.B.: An overview of Weibull analysis. The New Weibull Handbook: Reliability & Statistical Analysis for Predicting Life, Safety, Survivability, Risk, Cost and Warranty Claims, pp. 1–11. Barringer & Associates (2004)

  45. Wang, W., Langanke, D.R.: Comparing two designs when the new design has few or no failures—is the new design better than previous one? In: Proceedings - Annual Reliability and Maintainability Symposium, pp. 322–325. IEEE (2001)

  46. Nicholls, D., Lein, P.: Weibayes testing: What is the impact if assumed beta is incorrect? In: 2009 Annual Reliability and Maintainability Symposium, pp. 37–42. IEEE (2009)

  47. Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011)

    Article  Google Scholar 

  48. Ferrari, A., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000)

    Article  Google Scholar 

  49. Ferrari, A., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B. 64, 1–13 (2001)

    Article  Google Scholar 

  50. Nakanishi, K., Solomon, P.H.: Infrared absorption spectroscopy. Holden-Day, San Francisco (1977)

    Google Scholar 

  51. Erdemir, A., Ramirez, G., Eryilmaz, O.: In-situ formation of diamond-like carbon boundary films from lubricating oils. In: STLE 1st Tribology Frontiers Conference, Chicago, IL (2014)

  52. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  Google Scholar 

  53. Glover, D.: A ball-rod rolling contact fatigue tester. In: Hoo, J. (ed.) Rolling Contact Fatigue Testing of Bearing Steels, pp. 107–124. American Society for Testing Materials (1982)

  54. Liston, M.: RCF life comparison of bearing steels at two stress levels. Lubr. Eng. 55, 12–19 (1999)

    Google Scholar 

  55. Wei, R., Wilbur, P.J., Kustas, F.M.: a rolling contact fatigue study of hard carbon coated M-50 steel. J. Tribol. 114, 298 (1992)

    Article  Google Scholar 

  56. Rosado, L., Jain, V.K., Trivedi, H.K.: The effect of diamond-like carbon coatings on the rolling fatigue and wear of M50 steel. Wear 212, 1–6 (1997)

    Article  Google Scholar 

  57. Harris, T., Kotzalas, M.N.: Essential concepts of bearing technology. CRC Press, Boca Raton (2007)

    Google Scholar 

  58. De Barros Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)

    Article  Google Scholar 

  59. Lauer, J.L., Bunting, B.G.: High temperature solid lubrication by catalytically generated carbon. Tribol. Trans. 31, 339–350 (1988)

    Article  Google Scholar 

  60. Blanchet, T.A., Lauer, J.L., Liew, Y.-F., Rhee, S.J., Sawyer, W.G.: Solid lubrication by decomposition of carbon monoxide and other gases. Surf. Coat. Technol. 68–69, 446–452 (1994)

    Article  Google Scholar 

  61. Lauer, J.L., Vlcek, B.L., Sargent, B.L.: Wear reduction by pyrolytic carbon on tribosurfaces. Wear 162–164, 498–507 (1993)

    Article  Google Scholar 

  62. Lauer, J.L., Blanchet, T.A., Vleck, B.L., Sargent, B.L.: Lubrication of Si3N4 and steel rolling and sliding contacts by deposits of pyrolyzed carbonaceous gases. Surf. Coat. Technol. 62, 399–405 (1993)

    Article  Google Scholar 

  63. Evans, R.D., Doll, G.L., Hager, C.H., Howe, J.Y.: Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil. Tribol. Lett. 38, 25–32 (2010)

    Article  Google Scholar 

  64. Benck, J.D., Hellstern, T.R., Kibsgaard, J., Chakthranont, P., Jaramillo, T.F.: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to The Timken Company for providing financial support and guidance. We are grateful for Vanderbilt Chemicals for providing the MoDTC additive. The authors appreciate the help from Dr. P. Shiller for oil and surface analysis in FTIR. We acknowledge Mr. R. Fowler for assistance in depositing the coatings and conducting the tribological experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Doll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutyala, K.C., Singh, H., Fouts, J.A. et al. Influence of MoS2 on the Rolling Contact Performance of Bearing Steels in Boundary Lubrication: A Different Approach. Tribol Lett 61, 20 (2016). https://doi.org/10.1007/s11249-015-0638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0638-7

Keywords

Navigation