Advertisement

Tribology Letters

, Volume 53, Issue 1, pp 181–187 | Cite as

Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding

  • Xiaoli Hu
  • Christopher J. Tourek
  • Zhijiang Ye
  • Sriram Sundararajan
  • Ashlie MartiniEmail author
Original Paper

Abstract

Atomic force microscopy and molecular dynamics simulation are used to study the nanoscale wear of a silicon dioxide tip sliding on a copper substrate. Wear is characterized in terms of structural and chemical evolution of the system where the latter is possible experimentally using atom probe tomography of the slid tips. Comparison of the experimentally observed and simulation-predicted wear reveals that adhesive wear is dominant in the short sliding distances of the simulation at any applied load, while the sliding distances in the experiments are long enough to observe load-induced transitions between adhesive-dominated and abrasive-dominated wear.

Keywords

Wear mechanisms Nanotribology AFM 

Notes

Acknowledgments

Partial funding for this study was provided by the grants from the National Science Foundation (Grant No. CBET 0932573 for CT and SS, Grant No. 1068552-CMMI for AM and ZY) and the W.M. Keck Foundation for CT and SS. CT and SS acknowledge the help of Curtis Mosher and Andrew Hillier of Iowa State University for their discussions related to tip chemistry and atom probe data analysis. AM and XH acknowledge helpful discussions with Tevis Jacobs and Robert Carpick related to the transition state theory wear model.

References

  1. 1.
    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)CrossRefGoogle Scholar
  2. 2.
    Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763–3772 (2010)CrossRefGoogle Scholar
  3. 3.
    Jacobs, T.D., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)CrossRefGoogle Scholar
  4. 4.
    Tambe, N., Bhushan, B.: Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities. Tribol. Lett. 20(1), 83–90 (2005)CrossRefGoogle Scholar
  5. 5.
    M’ndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49(2), 351–356 (2013)CrossRefGoogle Scholar
  6. 6.
    Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31(3), 030801 (2013)CrossRefGoogle Scholar
  7. 7.
    Fang, T.H., Weng, C.I.: Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11(3), 148–153 (2000)CrossRefGoogle Scholar
  8. 8.
    Mulliah, D., Kenny, S., Smith, R., Sanz-Navarro, C.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15(3), 243–249 (2004)CrossRefGoogle Scholar
  9. 9.
    Zhong, J., Shakiba, R., Adams, J.B.: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate. J. Phys. D Appl. Phys. 46(5), 055307 (2013)CrossRefGoogle Scholar
  10. 10.
    Tourek, C.J., Sundararajan, S.: Study of atomic force microscopy probes using a local electrode atom probe microscope. Microsc. Microanal. 15(2), 290–291 (2009)CrossRefGoogle Scholar
  11. 11.
    Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989)CrossRefGoogle Scholar
  12. 12.
    Munetoh, S., Motooka, T., Moriguchi, K., Shintani, A.: Interatomic potential for Si-O systems using Tersoff parameterization. Comput. Mater. Sci. 39(2), 334–339 (2007)CrossRefGoogle Scholar
  13. 13.
    Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRefGoogle Scholar
  14. 14.
    Adams, J., Foiles, S., Wolfer, W.: Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4(01), 102–112 (1989)CrossRefGoogle Scholar
  15. 15.
    Gong, H., Lu, W., Wang, L., Li, G., Zhang, S.: The effects of substrate size and temperature on the deposition of Cu clusters on a Si substrate. J. Appl. Phys. 112(2), 024903 (2012)CrossRefGoogle Scholar
  16. 16.
    Hwang, H.J., Kwon, O.K., Kang, J.W.: Copper nanocluster diffusion in carbon nanotube. Solid State Commun. 129(11), 687–690 (2004)CrossRefGoogle Scholar
  17. 17.
    Gamache, R.R., Fischer, J.: Half-widths of H 2 16 OH 2 18 OH 2 17 OH D 16 O, and D 2 16 O: I. Comparison between isotopomers. J. Quant. Spectrosc. Radiat. Transf. 78(3), 289–304 (2003)CrossRefGoogle Scholar
  18. 18.
    Sader, J.E., Chon, J.W., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)CrossRefGoogle Scholar
  19. 19.
    Tourek, C.J., Sundararajan, S.: An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact. Rev. Sci. Instrum. 81(7), 073711 (2010)CrossRefGoogle Scholar
  20. 20.
    Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A Mater. Sci. Process. 66(5), 499–502 (1998)CrossRefGoogle Scholar
  21. 21.
    Villarrubia, J.: Algorithm for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)CrossRefGoogle Scholar
  22. 22.
    Williams, P., Shakesheff, K., Davies, M., Jackson, D., Roberts, C., Tendler, S.: Blind reconstruction of scanning probe image data. J. Vac. Sci. Technol. B 14(2), 1557–1562 (1996)CrossRefGoogle Scholar
  23. 23.
    Miller, M.K., Miller, M.K.: Atom probe tomography: analysis at the atomic level. Kluwer Academic/Plenum Publishers, New York (2000)CrossRefGoogle Scholar
  24. 24.
    Kelly, T.F., Miller, M.K.: Invited review article: atom probe tomography. Rev. Sci. Instrum. 78(3), 031101 (2007)CrossRefGoogle Scholar
  25. 25.
    Seidman, D.N.: Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007)CrossRefGoogle Scholar
  26. 26.
    Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D., Gorman, B.P.: Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681–727 (2007)CrossRefGoogle Scholar
  27. 27.
    Danoix, F., Auger, P.: Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: a review. Mater. Charact. 44(1), 177–201 (2000)CrossRefGoogle Scholar
  28. 28.
    Sundararajan, S., Bhushan, B.: Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225, 678–689 (1999)CrossRefGoogle Scholar
  29. 29.
    Degiampietro, K., Colaco, R.: Nanoabrasive wear induced by an AFM diamond tip on stainless steel. Wear 263(7), 1579–1584 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhao, X., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear 223(1), 66–78 (1998)CrossRefGoogle Scholar
  31. 31.
    Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15(2), 135–144 (2003)CrossRefGoogle Scholar
  32. 32.
    Lhymn, C., Light, R.: Effect of sliding velocity on wear rate of fibrous polymer composites. Wear 116(3), 343–359 (1987)CrossRefGoogle Scholar
  33. 33.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181–185 (2010)CrossRefGoogle Scholar
  34. 34.
    Kitsunai, H., Kato, K., Hokkirigawa, K., Inoue, H.: The transitions between microscopic wear modes during repeated sliding friction observed by a scanning electron microscope tribosystem. Wear 135(2), 237–249 (1990)CrossRefGoogle Scholar
  35. 35.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)CrossRefGoogle Scholar
  36. 36.
    Sheehan, P.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410(13), 151–155 (2005)CrossRefGoogle Scholar
  37. 37.
    Park, N.S., Kim, M.W., Langford, S., Dickinson, J.: Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy. J. Appl. Phys. 80(5), 2680–2686 (1996)CrossRefGoogle Scholar
  38. 38.
    Jacobs, T.D., Gotsmann, B., Lantz, M.A., Carpick, R.W.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257–271 (2010)CrossRefGoogle Scholar
  39. 39.
    Dearnaley, G.: Adhesive, abrasive and oxidative wear in ion-implanted metals. Mater. Sci. Eng. 69(1), 139–147 (1985)CrossRefGoogle Scholar
  40. 40.
    d’ Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15(7), 795–801 (2004)CrossRefGoogle Scholar
  41. 41.
    Hokkirigawa, K., Kato, K.: An experimental and theoretical investigation of plowing, cutting and wedge formation during abrasive wear. Tribol. Int. 21(1), 51–57 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiaoli Hu
    • 1
  • Christopher J. Tourek
    • 2
  • Zhijiang Ye
    • 1
  • Sriram Sundararajan
    • 2
  • Ashlie Martini
    • 1
    Email author
  1. 1.School of EngineeringUniversity of California University of California MercedMercedUSA
  2. 2.Department of Mechanical EngineeringIowa State UniversityAmesUSA

Personalised recommendations