Skip to main content
Log in

Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Atomic force microscopy and molecular dynamics simulation are used to study the nanoscale wear of a silicon dioxide tip sliding on a copper substrate. Wear is characterized in terms of structural and chemical evolution of the system where the latter is possible experimentally using atom probe tomography of the slid tips. Comparison of the experimentally observed and simulation-predicted wear reveals that adhesive wear is dominant in the short sliding distances of the simulation at any applied load, while the sliding distances in the experiments are long enough to observe load-induced transitions between adhesive-dominated and abrasive-dominated wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)

    Article  Google Scholar 

  2. Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763–3772 (2010)

    Article  Google Scholar 

  3. Jacobs, T.D., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)

    Article  Google Scholar 

  4. Tambe, N., Bhushan, B.: Nanowear mapping: a novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities. Tribol. Lett. 20(1), 83–90 (2005)

    Article  Google Scholar 

  5. M’ndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49(2), 351–356 (2013)

    Article  Google Scholar 

  6. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31(3), 030801 (2013)

    Article  Google Scholar 

  7. Fang, T.H., Weng, C.I.: Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11(3), 148–153 (2000)

    Article  Google Scholar 

  8. Mulliah, D., Kenny, S., Smith, R., Sanz-Navarro, C.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15(3), 243–249 (2004)

    Article  Google Scholar 

  9. Zhong, J., Shakiba, R., Adams, J.B.: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate. J. Phys. D Appl. Phys. 46(5), 055307 (2013)

    Article  Google Scholar 

  10. Tourek, C.J., Sundararajan, S.: Study of atomic force microscopy probes using a local electrode atom probe microscope. Microsc. Microanal. 15(2), 290–291 (2009)

    Article  Google Scholar 

  11. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989)

    Article  Google Scholar 

  12. Munetoh, S., Motooka, T., Moriguchi, K., Shintani, A.: Interatomic potential for Si-O systems using Tersoff parameterization. Comput. Mater. Sci. 39(2), 334–339 (2007)

    Article  Google Scholar 

  13. Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  Google Scholar 

  14. Adams, J., Foiles, S., Wolfer, W.: Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4(01), 102–112 (1989)

    Article  Google Scholar 

  15. Gong, H., Lu, W., Wang, L., Li, G., Zhang, S.: The effects of substrate size and temperature on the deposition of Cu clusters on a Si substrate. J. Appl. Phys. 112(2), 024903 (2012)

    Article  Google Scholar 

  16. Hwang, H.J., Kwon, O.K., Kang, J.W.: Copper nanocluster diffusion in carbon nanotube. Solid State Commun. 129(11), 687–690 (2004)

    Article  Google Scholar 

  17. Gamache, R.R., Fischer, J.: Half-widths of H 2 16 OH 2 18 OH 2 17 OH D 16 O, and D 2 16 O: I. Comparison between isotopomers. J. Quant. Spectrosc. Radiat. Transf. 78(3), 289–304 (2003)

    Article  Google Scholar 

  18. Sader, J.E., Chon, J.W., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)

    Article  Google Scholar 

  19. Tourek, C.J., Sundararajan, S.: An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact. Rev. Sci. Instrum. 81(7), 073711 (2010)

    Article  Google Scholar 

  20. Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A Mater. Sci. Process. 66(5), 499–502 (1998)

    Article  Google Scholar 

  21. Villarrubia, J.: Algorithm for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)

    Article  Google Scholar 

  22. Williams, P., Shakesheff, K., Davies, M., Jackson, D., Roberts, C., Tendler, S.: Blind reconstruction of scanning probe image data. J. Vac. Sci. Technol. B 14(2), 1557–1562 (1996)

    Article  Google Scholar 

  23. Miller, M.K., Miller, M.K.: Atom probe tomography: analysis at the atomic level. Kluwer Academic/Plenum Publishers, New York (2000)

    Book  Google Scholar 

  24. Kelly, T.F., Miller, M.K.: Invited review article: atom probe tomography. Rev. Sci. Instrum. 78(3), 031101 (2007)

    Article  Google Scholar 

  25. Seidman, D.N.: Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007)

    Article  Google Scholar 

  26. Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D., Gorman, B.P.: Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681–727 (2007)

    Article  Google Scholar 

  27. Danoix, F., Auger, P.: Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: a review. Mater. Charact. 44(1), 177–201 (2000)

    Article  Google Scholar 

  28. Sundararajan, S., Bhushan, B.: Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225, 678–689 (1999)

    Article  Google Scholar 

  29. Degiampietro, K., Colaco, R.: Nanoabrasive wear induced by an AFM diamond tip on stainless steel. Wear 263(7), 1579–1584 (2007)

    Article  Google Scholar 

  30. Zhao, X., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear 223(1), 66–78 (1998)

    Article  Google Scholar 

  31. Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15(2), 135–144 (2003)

    Article  Google Scholar 

  32. Lhymn, C., Light, R.: Effect of sliding velocity on wear rate of fibrous polymer composites. Wear 116(3), 343–359 (1987)

    Article  Google Scholar 

  33. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181–185 (2010)

    Article  Google Scholar 

  34. Kitsunai, H., Kato, K., Hokkirigawa, K., Inoue, H.: The transitions between microscopic wear modes during repeated sliding friction observed by a scanning electron microscope tribosystem. Wear 135(2), 237–249 (1990)

    Article  Google Scholar 

  35. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Article  Google Scholar 

  36. Sheehan, P.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410(13), 151–155 (2005)

    Article  Google Scholar 

  37. Park, N.S., Kim, M.W., Langford, S., Dickinson, J.: Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy. J. Appl. Phys. 80(5), 2680–2686 (1996)

    Article  Google Scholar 

  38. Jacobs, T.D., Gotsmann, B., Lantz, M.A., Carpick, R.W.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257–271 (2010)

    Article  Google Scholar 

  39. Dearnaley, G.: Adhesive, abrasive and oxidative wear in ion-implanted metals. Mater. Sci. Eng. 69(1), 139–147 (1985)

    Article  Google Scholar 

  40. d’ Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15(7), 795–801 (2004)

    Article  Google Scholar 

  41. Hokkirigawa, K., Kato, K.: An experimental and theoretical investigation of plowing, cutting and wedge formation during abrasive wear. Tribol. Int. 21(1), 51–57 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

Partial funding for this study was provided by the grants from the National Science Foundation (Grant No. CBET 0932573 for CT and SS, Grant No. 1068552-CMMI for AM and ZY) and the W.M. Keck Foundation for CT and SS. CT and SS acknowledge the help of Curtis Mosher and Andrew Hillier of Iowa State University for their discussions related to tip chemistry and atom probe data analysis. AM and XH acknowledge helpful discussions with Tevis Jacobs and Robert Carpick related to the transition state theory wear model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Tourek, C.J., Ye, Z. et al. Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding. Tribol Lett 53, 181–187 (2014). https://doi.org/10.1007/s11249-013-0255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0255-2

Keywords

Navigation