Skip to main content
Log in

Balancing Wedge Action: A Contribution of Textured Surface to Hydrodynamic Pressure Generation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper suggests a new mechanism called ‘balancing wedge action’, which is based on the hydrodynamic lubrication theory for textured surfaces. While past studies have considered the local wedge film action produced by textured feature, this new mechanism is based on the promotion of a wedge film action between surfaces by the incorporation of a textured feature. The analytical model used in the current study is a one-dimensional centrally pivoted pad bearing having a single dimple on the pad, which considers the equilibrium of the moment applied to the surfaces. Analytical equations are derived for the pressure, shear stress, load, friction, and moment by integrating the Reynolds equation. A series of parametric simulations of the depth, width, and location of a dimple were conducted. The analytical results showed that the incorporation of a single dimple on the pad surface increases the convergence ratio between the surfaces, producing a load capacity and reducing the friction. No negative pressure can be found within the dimple, where a positive pressure with a greater positive gradient causes a higher shear stress than that outside the dimple. The trends for the load and friction in relation to the dimple depth and location are complex. The creation of the dimple closer to the centre results in a failure to obtain an equilibrium solution for the moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

F :

Dimensionless friction, F = fh 0/(ηlu)

H :

Dimensionless film thickness, H = h/h 0

H 1 :

Dimensionless film thickness at inlet, H 1 = h 1/h 0

H 2 :

Dimensionless film thickness at left side of dimple, H 2 = h 2/h 0

H 2d :

Dimensionless film thickness at left side of dimple, H 2d = h 2d/h 0

H 3 :

Dimensionless film thickness at right side of dimple, H 3 = h 3/h 0

H 3d :

Dimensionless film thickness at right side of dimple, H 3d = h 3d/h 0

H d :

Dimensionless dimple depth, H d = h d/h 0

K :

Convergence ratio, K = (h 1h 0)/h 0

L 2 :

Dimensionless position at left side of dimple, L 2 = l 2/l

L 3 :

Dimensionless position at right side of dimple, L 3 = l 3/l

L pv :

Dimensionless position of pivot, L pv = l pv/l

M :

Dimensionless moment, M = h 20 m/(6ηl 3 u)

P :

Dimensionless pressure, P = h 20 p/(6ηlu)

P min :

Dimensionless minimum pressure

Q :

Dimensionless mass flow rate, Q = q/(h 0 u)

Q c :

Dimensionless Couette flow rate, Q c = q c/(h 0 u)

Q p :

Dimensionless Poiseuille flow rate, Q p = q p/(h 0 u)

S :

Dimensionless shear stress, S = −h 0 s/(ηu)

S c :

Dimensionless shear stress by Couette flow, S c = 1/H

S p :

Dimensionless shear stress by Poiseuille flow, S p = H/2(dP/dX)

X :

Dimensionless coordinate in direction of surface motion, X = x/l

W :

Dimensionless load, W = h 20 w/(6ηl 2 u)

f :

Friction (N/m)

h :

Film thickness (m)

h 1 :

Film thickness at inlet (m)

h 2 :

Film thickness at left side of dimple (m)

h 2d :

Film thickness at left side of dimple (m), h 2d = h 2 + h d

h 3 :

Film thickness at right side of dimple (m)

h 3d :

Film thickness at right side of dimple (m), h 3d = h 3 + h d

h 0 :

Minimum film thickness (m)

h d :

Dimple depth (m)

l :

Width of pad (m)

l 2 :

Position at left side of dimple (m)

l 3 :

Position at right side of dimple (m)

l pv :

Position of pivot (m)

n max :

Maximum number of series terms

p :

Pressure of fluid film (Pa)

q :

Mass flow rate, q = q c + q p (m3/(ms))

q c :

Couette mass flow rate (m3/(ms))

q p :

Poiseuille mass flow rate (m3/(ms))

s :

Shear stress (N/m)

u :

Sliding speed of moving surface (m)

x :

Coordinate in direction of surface motion (m)

w :

Load (N/m)

η :

Viscosity (Pas)

References

  1. Etsion, I.: State of the art in laser surface texturing. Trans. ASME J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  2. Salama, M.E.: The effect of macroroughness on the performance of parallel thrust bearings. Proc. Inst. Mech. Eng. 163, 149–158 (1952)

    Google Scholar 

  3. Hamilton, D.B., Walowit, J.A., Allen, C.M.: A theory of lubrication by microirregularities. Trans. ASME J. Basic Eng. 88, 177–185 (1966)

    Article  Google Scholar 

  4. Anno, J.N., Walowit, J.A., Allen, C.M.: Microasperity lubrication. Trans. ASME J. Lubr. Technol. 90, 351–355 (1968)

    Article  Google Scholar 

  5. Anno, J.N., Walowit, J.A., Allen, C.M.: Load support and leakage from microasperity-lubricated face seals. Trans. ASME J. Lubr. Technol. 91, 726–731 (1969)

    Article  Google Scholar 

  6. Olver, A.V., Fowell, M.T., Spikes, H.A., Pegg, I.G.: ‘Inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220(2), 105–108 (2006)

    Article  Google Scholar 

  7. Fowell, M., Olver, A.V., Gosman, A.D., Spikes, H.A., Pegg, I: Entrainment and inlet suction: two mechanisms of hydrodynamic lubrication in textured bearings. Trans. ASME J. Trib. 129, 336–347 (2007)

    Google Scholar 

  8. Fowell, M.T., Medina, S., Olver, A.V., Spikes, H.A., Pegg, I.G.: Parametric study of texturing in convergent bearings. Tribol. Int. 52, 7–16 (2012)

    Article  Google Scholar 

  9. Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., Buscaglia, G.C.: The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. Trans. ASME J. Tribol. 129, 868–875 (2007)

    Article  Google Scholar 

  10. Elrod, H.G., Adams, M.: A computer program for cavitation and starvation problems. In: Proceedings of the First Leeds-Lyon Symposium on Cavitation and Related Phenomena in Lubrication, pp. 37–41. Leeds, UK (1974)

  11. Qiu, Y., Khonsari, M.M.: On the prediction of cavitation in dimples using a mass-conservative algorithm. Trans. ASME J. Trib. 131, 4, 041702 (2009)

    Google Scholar 

  12. Qiu, Y., Khonsari, M.M.: Performance analysis of full-film textured surfaces with consideration of roughness effects. Trans. ASME, J. Trib. 133, 2, 021704 (2011)

    Google Scholar 

  13. Qiu, Y., Khonsari, M.M.: Experimental investigation of tribological performance of laser textured stainless steel rings. Tribol. Int. 44(5), 635–644 (2011)

    Article  CAS  Google Scholar 

  14. Tokunaga, Y., Inoue, H., Okada, K., Shimomura, T., Yamamoto, Y.: Effects of cavitation ring formed on laser-textured surface of mechanical seal. Tribol. Online 6(1), 36–39 (2011)

    Article  Google Scholar 

  15. Zhang, J., Meng, Y.: Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured Surfaces. Tribol. Lett. 46(2), 147–158 (2012)

    Article  CAS  Google Scholar 

  16. Wahl, R., Schneider, J., Gumbsch, P.: In situ observation of cavitation in crossed microchannels. Tribol. Int. 55, 81–86 (2012)

    Article  Google Scholar 

  17. Yang, S.Y., Wang, H.F., Guo, F.: Experimental investigation on the groove effect in hydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 226(April), 263–273 (2012)

    Google Scholar 

  18. Tønder, K.: Inlet roughness tribodevices: dynamic coefficients and leakage. Tribol. Int. 34(12), 847–852 (2001)

    Article  Google Scholar 

  19. Tønder, K.: Hydrodynamic effects of tailored inlet roughnesses: extended theory. Tribol. Int. 37(2), 137–142 (2004)

    Article  Google Scholar 

  20. Rayleigh, L.: Notes on the theory of lubrication. Philos. Mag. J. Sci. 35(205), 1–12 (1918)

    Article  Google Scholar 

  21. Etsion, I., Burstein, L.: A model for mechanical seals with regular microsurface structure. Tribol. Trans. 39(3), 677–683 (1996)

    Article  CAS  Google Scholar 

  22. Etsion, I., Halperin, G., Greenberg, Y.: Increasing mechanical seals life with laser-textured seal faces. In: Proceedings of 15th International Conference on Fluid Sealing, pp. 3–11. BHR Group (1997)

  23. Etsion, I., Kligerman, Y., Halperin, G.: Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol. Trans. 42(3), 511–516 (1999)

    Article  CAS  Google Scholar 

  24. Etsion, I., Halperin, G.: A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 45(3), 430–434 (2002)

    Article  CAS  Google Scholar 

  25. Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46(3), 397–403 (2003)

    Article  CAS  Google Scholar 

  26. Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribol. Lett. 17(2), 295–300 (2004)

    Article  Google Scholar 

  27. Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I.: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribol. Trans. 47(2), 299–307 (2004)

    Article  CAS  Google Scholar 

  28. Ryk, G., Kligerman, Y., Etsion, I.: Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol. Trans. 45(4), 444–449 (2002)

    Article  CAS  Google Scholar 

  29. Kligerman, Y., Etsion, I., Shinkarenko, A.: Improving tribological performance of piston rings by partial surface texturing. Trans. ASME J. Trib. 127, 632–638 (2005)

    Google Scholar 

  30. Kligerman, Y., Etsion, I.: Analysis of the hydrodynamic effects in a surface textured circumferential gas seal. Tribol. Trans. 44(1), 472–478 (2001)

    Article  CAS  Google Scholar 

  31. Cameron, A.: Principles of lubrication. Longmans Green Co Ltd, London (1966)

    Google Scholar 

  32. Stachowiak, G.W., Bachelor, A.W.: Engineering tribology, 3rd edn. Elsevier Inc., Amsterdam (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagi.

Appendix: Expansions of Load, Friction, and Moment for Accurate Calculation in Region of Low Convergence Ratios

Appendix: Expansions of Load, Friction, and Moment for Accurate Calculation in Region of Low Convergence Ratios

1.1 Load

Dimensionless load W is given by integrating the pressure distribution over the contact area.

$$ W = \int\limits_{0}^{{L_{2} }} {P{\text{d}}X} + \int\limits_{{L_{2} }}^{{L_{3} }} {P{\text{d}}X} + \int\limits_{{L_{3} }}^{1} {P{\text{d}}X} $$
(54)

Integrating the pressure distribution in the left land zone, dimple zone, and right land zone gives

$$ \begin{aligned} W & = \frac{1}{{K^{2} }}\left( { - \ln \left( {\frac{{H_{2} }}{{H_{1} }}} \right) - K\left( {\frac{{L_{2} }}{{H_{1}^{{}} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {\frac{{L_{2} }}{{H_{1}^{2} }}} \right) + \left( {\frac{1}{{H_{2} }} - \frac{1}{{H_{1} }}} \right)} \right) \\ & \quad + \frac{1}{{K^{2} }}\left( { - \ln \left( {\frac{{H_{{3{\text{d}}}} }}{{H_{{2{\text{d}}}} }}} \right) - K\left( {\frac{{L_{3} - L_{2} }}{{H_{{2{\text{d}}}} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {\frac{{L_{3} - L_{2} }}{{H_{{2{\text{d}}}}^{2} }}} \right) + \left( {\frac{1}{{H_{{3{\text{d}}}} }} - \frac{1}{{H_{{2{\text{d}}}} }}} \right)} \right) + P_{2} \left( {L_{3} - L_{2} } \right) \\ & \quad + \frac{1}{{K^{2} }}\left( { - \ln \left( {\frac{1}{{H{}_{3}}}} \right) - K\left( {1 - L_{3} } \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {1 - L_{3} } \right) + \left( {1 - \frac{1}{{H_{3} }}} \right)} \right) \\ \end{aligned} $$
(55)

where P 2 is the dimensionless pressure at the left step point and Q is the dimensionless flow rate given by

$$ P_{2} = \frac{{L_{2} }}{{H_{1} H_{2} }}\left( {1 - \left( {\frac{1}{{H_{1} }} + \frac{1}{{H_{2} }}} \right)Q} \right) $$
(56)
$$ Q = \frac{{\left( {\frac{{L_{2} }}{{H_{1} H_{2} }} + \frac{{(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }} + \frac{{(1 - L_{3} )}}{{H_{3} }}} \right)}}{{\left( {\frac{{L_{2} (H_{1} + H_{2} )}}{{H_{1}^{2} H_{2}^{2} }} + \frac{{(L_{3} - L_{2} )(H_{{2{\text{d}}}} + H_{{3{\text{d}}}} )}}{{H_{{2{\text{d}}}}^{2} H_{{3{\text{d}}}}^{2} }} + \frac{{(1 - L_{3} )(1 + H_{3} )}}{{H_{3}^{2} }}} \right)}} $$
(57)

After further expansion, Eq. (55) can be modified to

$$ \begin{aligned} W & = \frac{1}{{K^{2} }}\left( { - \ln \left( {1 - \frac{{KL_{2} }}{{H_{1} }}} \right) - K\left( {\frac{{L_{2} }}{{H_{1} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {\frac{{L_{2} }}{{H_{1}^{2} }}} \right) + \left( {\frac{{KL_{2} }}{{H_{1} H_{2} }}} \right)} \right) \\ & \quad + \frac{1}{{K^{2} }}\left( { - \ln \left( {1 - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }}} \right) - K\left( {\frac{{L_{3} - L_{2} }}{{H_{{2{\text{d}}}} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {\frac{{L_{3} - L_{2} }}{{H_{{2{\text{d}}}}^{2} }}} \right) + \left( {\frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }}} \right)} \right) + P_{2} \left( {L_{3} - L_{2} } \right) \\ & \quad + \frac{1}{{K^{2} }}\left( { - \ln \left( {1 - \frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) - K\left( {1 - L_{3} } \right)} \right) - \frac{Q}{{K^{2} }}\left( { - K\left( {1 - L_{3} } \right) + \left( {\frac{{K(1 - L_{3} )}}{{H_{3} }}} \right)} \right) \\ \end{aligned} $$
(58)

Substituting the Maclaurin expansion of the log terms and the film thickness equations into Eq. (58), Eq. (58) is further modified to

$$ \begin{aligned} W & = \frac{1}{{K^{2} }}\left( {\frac{{KL_{2} }}{{H_{1} }} + \frac{{K^{2} L_{2}^{2} }}{{2H_{1}^{2} }} + \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} L_{2}^{n} }}{{nH_{1}^{n} }}} - K\left( {\frac{{L_{2} }}{{H_{1} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( {\frac{{KL_{2} (H_{1} - H_{2} )}}{{H_{{^{{_{1} }} }}^{2} H_{2} }}} \right) \\ & \quad + \frac{1}{{K^{2} }}\left( {\frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} + \frac{{K^{2} (L_{3} - L_{2} )^{2} }}{{2H_{{_{{2{\text{d}}}} }}^{2} }} + \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (L_{3} - L_{2} )^{n} }}{{nH_{{_{{2{\text{d}}}} }}^{2} }}} - K\left( {\frac{{L_{3} - L_{2} }}{{H_{{2{\text{d}}}} }}} \right)} \right) - \frac{Q}{{K^{2} }}\left( {\frac{{K(L_{3} - L_{2} )(H_{{2{\text{d}}}} - H_{{3{\text{d}}}} )}}{{H_{{_{{2{\text{d}}}} }}^{2} H_{{3{\text{d}}}} }}} \right) + P_{2} \left( {L_{3} - L_{2} } \right) \\ & \quad + \frac{1}{{K^{2} }}\left( {\frac{{K(1 - L_{3} )}}{{H_{3} }} + \frac{{K^{2} (1 - L_{3} )^{2} }}{{2H_{{_{3} }}^{2} }} + \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} - K\left( {1 - L_{3} } \right)} \right) - \frac{Q}{{K^{2} }}\left( {\frac{{K(1 - L_{3} )(1 - H_{3} )}}{{H_{3} }}} \right) \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(59)

The elimination of K in the denominators gives the following arranged expression

$$ \begin{aligned} W & = \frac{{L_{2}^{2} }}{{2H_{1}^{2} }} - Q\frac{{L_{2}^{2} }}{{H_{1}^{2} H_{2} }} + \sum\limits_{n = 3}^{\infty } {\frac{{L_{2}^{n} }}{{nH_{1}^{n} }}} K^{n - 2} \\ & \quad + \frac{{(L_{3} - L_{2} )^{2} }}{{2H_{{2{\text{d}}}}^{2} }} - Q\frac{{(L_{3} - L_{2} )^{2} }}{{H_{{2{\text{d}}}}^{2} H_{{3{\text{d}}}} }} + P_{2} (L_{3} - L_{2} ) + \sum\limits_{n = 3}^{\infty } {\frac{{(L_{3} - L_{2} )^{n} }}{{nH_{{2{\text{d}}}}^{n} }}} K^{n - 2} \\ & \quad + \frac{{(1 - L_{3} )^{2} }}{{2H_{3}^{2} }} + Q\frac{{(1 - L_{3} )^{2} }}{{H_{3} }} - \frac{{(1 - L_{3} )^{2} }}{{H_{3} }} + \sum\limits_{n = 3}^{\infty } {\frac{{(1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} K^{n - 2} \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(60)

In the parallel case (K = 0), the dimensionless flow rate Q becomes

$$ Q = \frac{{\left( {L_{2} + \frac{{(L_{3} - L_{2} )}}{{(1 + H_{\text{d}} )^{2} }} + (1 - L_{3} )} \right)}}{{2\left( {L_{2} + \frac{{(L_{3} - L_{2} )}}{{(1 + H_{\text{d}} )^{3} }} + (1 - L_{3} )} \right)}} $$
(61)
$$ P_{2} = L_{2} \left( {1 - 2Q} \right) $$
(62)

Equation (59) becomes

$$ W = \frac{{L_{2}^{2} }}{2} - QL_{2}^{2} + \frac{{(L_{3} - L_{2} )^{2} }}{{2(1 + H_{\text{d}} )^{2} }} - Q\frac{{(L_{3} - L_{2} )^{2} }}{{(1 + H_{\text{d}} )^{3} }} + P_{2} (L_{3} - L_{2} ) - \frac{{(1 - L_{3} )^{2} }}{2} + Q(1 - L_{3} )^{2} $$
(63)

1.2 Friction

Dimensionless friction F is given by integrating the shear stress over the contact area

$$ F = \int\limits_{0}^{{L_{2} }} {S{\text{d}}X} + \int\limits_{{L_{2} }}^{{L_{3} }} {S{\text{d}}X} + \int\limits_{{L_{3} }}^{1} {S{\text{d}}X} $$
(64)

The integrated expression is as follows:

$$ \begin{aligned} F & = 4\frac{1}{K}\ln \left( {1 - \frac{{KL_{2} }}{{H_{1} }}} \right) + 6\frac{Q}{K}\left( {\frac{{KL_{2} }}{{H_{1} H_{2} }}} \right) \\ & \quad + 4\frac{1}{K}\ln \left( {1 - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }}} \right) + 6\frac{Q}{K}\left( {\frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }}} \right) \\ & \quad + 4\frac{1}{K}\ln \left( {1 - \frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) + 6\frac{Q}{K}\left( {\frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) \\ \end{aligned} $$
(65)

After further expansion in the same manner as the dimensionless load W, Eq. (65) can be modified to

$$ \begin{aligned} F & = 4\frac{1}{K}\left( { - \frac{{KL_{2} }}{{H_{1} }} - \sum\limits_{n = 2}^{\infty } {\frac{{K^{n} L_{2}^{n} }}{{nH_{1}^{n} }}} } \right) + 6\frac{Q}{K}\left( {\frac{{KL_{2} }}{{H_{1} H_{2} }}} \right) \\ & \quad + 4\frac{1}{K}\left( { - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} - \sum\limits_{n = 2}^{\infty } {\frac{{K^{n} (L_{3} - L_{2} )^{n} }}{{nH_{{_{{2{\text{d}}}} }}^{2} }}} } \right) + 6\frac{Q}{K}\left( {\frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }}} \right) \\ & \quad + 4\frac{1}{K}\left( { - \frac{{K(1 - L_{3} )}}{{H_{3} }} - \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} } \right) + 6\frac{Q}{K}\left( {\frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(66)

An arranged form is given by

$$ \begin{aligned} F & = - 4\left( {\frac{{L_{2} }}{{H_{1} }} + \frac{{(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} + \frac{{(1 - L_{3} )}}{{H_{3} }}} \right) + 6Q\left( {\frac{{L_{2} }}{{H_{1} H_{2} }} + \frac{{(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }} + \frac{{(1 - L_{3} )}}{{H_{3} }}} \right) \\ & \quad - 4\sum\limits_{n = 2}^{\infty } {\left( {\left( {\frac{{L_{2} }}{{H_{1} }}} \right)^{n} + \left( {\frac{{(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }}} \right)^{n} + \left( {\frac{{(1 - L_{3} )}}{{H_{3} }}} \right)^{n} } \right)} \frac{{K^{n - 1} }}{n} \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(67)

In the parallel case (K = 0), Eq. (67) becomes

$$ F = - 4\left( {L_{2} + \frac{{(L_{3} - L_{2} )}}{{(1 + H_{\text{d}} )}} + (1 - L_{3} )} \right) + 6Q\left( {L_{2} + \frac{{(L_{3} - L_{2} )}}{{(1 + H_{\text{d}} )^{2} }} + (1 - L_{3} )} \right) $$
(68)

1.3 Moment

Dimensionless moment M is given by

$$ M = \int\limits_{0}^{{L_{2} }} {P(X - L_{\text{pv}} ){\text{d}}X} + \int\limits_{{L_{2} }}^{{L_{3} }} {P(X - L_{\text{pv}} ){\text{d}}X} + \int\limits_{{L_{3} }}^{1} {P(X - L_{\text{pv}} ){\text{d}}X} $$
(69)

The integrated expression is as follows.

$$ \begin{aligned} M & = - \frac{1}{{K^{2} }}\left( {\ln \left( {1 - \frac{{KL_{2} }}{{H_{1} }}} \right) + \frac{1}{K}\ln \left( {1 - \frac{{KL_{2} }}{{H_{1} }}} \right) + L_{2} + \frac{{KL_{2}^{2} }}{{2H_{1} }}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \left( {\frac{1}{{H_{2} }} - \frac{1}{{H_{1} }}} \right) - \frac{1}{K}\ln \left( {1 - \frac{{KL_{2} }}{{H_{1} }}} \right) - \frac{1}{K}\left( {\frac{1}{{H_{2} }} - \frac{1}{{H_{1} }}} \right) + \frac{{KL_{2}^{2} }}{{2H_{1}^{2} }}} \right) \\ & \quad - \frac{1}{{K^{2} }}\left( {\left( {1 + \frac{{(1 + H_{\text{d}} )}}{K}} \right)\ln \left( {1 - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }}} \right) + (L_{3} - L_{2} ) + \frac{{K(L_{3}^{2} - L_{2}^{2} )}}{{2H_{{2{\text{d}}}} }}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \left( {\frac{1}{{H_{{3{\text{d}}}} }} - \frac{1}{{H_{{2{\text{d}}}} }}} \right) - \frac{1}{K}\ln \left( {1 - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }}} \right) - \frac{{(1 + H_{\text{d}} )}}{K}\left( {\frac{1}{{H_{{3{\text{d}}}} }} - \frac{1}{{H_{{2{\text{d}}}} }}} \right) + \frac{{K(L_{3}^{2} - L_{2}^{2} )}}{{2H_{{2{\text{d}}}}^{2} }}} \right) + \frac{1}{2}P_{2} \left( {L_{3}^{2} - L_{2}^{2} } \right) \\ & \quad - \frac{1}{{K^{2} }}\left( {\left( {1 + \frac{1}{K}} \right)\ln \left( {1 - \frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) + (1 - L_{3} ) + \frac{{K(1 - L_{{_{3} }}^{2} )}}{2}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \left( {1 - \frac{1}{{H_{3} }}} \right) - \frac{1}{K}\ln \left( {1 - \frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) - \frac{1}{K}\left( {1 - \frac{1}{{H_{3} }}} \right) + \frac{{K(1 - L_{3}^{2} )}}{2}} \right) \\ & \quad - WL_{\text{pv}} = 0 \\ \end{aligned} $$
(70)

Substituting the Maclaurin expansion of the log terms into Eq. (70), M can be calculated as follows:

$$ \begin{aligned} M & = - \frac{1}{{K^{2} }}\left( { - \frac{{KL_{2} }}{{H_{1} }} - \frac{{K^{2} L_{2}^{2} }}{{2H_{1}^{2} }} - \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} L_{2}^{n} }}{{nH_{1}^{n} }}} - \frac{{L_{2} }}{{H_{1} }} - \frac{{KL_{2}^{2} }}{{2H_{{_{1} }}^{2} }} - \frac{{K^{2} L_{2}^{3} }}{{3H_{{_{1} }}^{3} }} - \sum\limits_{n = 4}^{\infty } {\frac{{K^{n - 1} L_{2}^{n} }}{{nH_{1}^{n} }}} + L_{2} + \frac{{KL_{2}^{2} }}{{2H_{1} }}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \left( {\frac{{KL_{2} }}{{H_{1} H_{2} }}} \right) + \frac{{L_{2} }}{{H_{1} }} + \frac{{KL_{2}^{2} }}{{2H_{{_{1} }}^{2} }} + \frac{{K^{2} L_{2}^{3} }}{{3H_{{_{1} }}^{3} }} + \sum\limits_{n = 4}^{\infty } {\frac{{K^{n - 1} L_{2}^{n} }}{{nH_{1}^{n} }}} - \frac{{L_{2} }}{{H_{1} H_{2} }} + \frac{{KL_{2}^{2} }}{{2H_{1}^{2} }}} \right) \\ & \quad - \frac{1}{{K^{2} }}\left( { - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} - \frac{{K^{2} (L_{3} - L_{2} )^{2} }}{{2H_{{_{{2{\text{d}}}} }}^{2} }} - \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (L_{3} - L_{2} )^{n} }}{{nH_{{_{{2{\text{d}}}} }}^{2} }}} } \right) \\ & \quad - \frac{1}{{K^{2} }}\left( {\left( {\frac{{1 + H_{\text{d}} }}{K}} \right)\left( { - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} - \frac{{K^{2} (L_{3} - L_{2} )^{2} }}{{2H_{{_{{2{\text{d}}}} }}^{2} }} - \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (L_{3} - L_{2} )^{n} }}{{nH_{{_{{2{\text{d}}}} }}^{2} }}} } \right) + (L_{3} - L_{2} ) + \frac{{K(L_{3}^{2} - L_{2}^{2} )}}{{2H_{{2{\text{d}}}} }}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }} + \frac{{(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} + \frac{{K(L_{3} - L_{2} )^{2} }}{{2H_{{_{{2{\text{d}}}} }}^{2} }} + \frac{{K^{2} (L_{3} - L_{2} )^{3} }}{{3H_{{_{{2{\text{d}}}} }}^{3} }} + \sum\limits_{n = 4}^{\infty } {\frac{{K^{n - 1} (L_{3} - L_{2} )^{n} }}{{nH_{{_{{2{\text{d}}}} }}^{2} }}} - \frac{{(1 + H_{\text{d}} )(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} H_{{3{\text{d}}}} }} + \frac{{K(L_{3}^{2} - L_{2}^{2} )}}{{2H_{{2{\text{d}}}}^{2} }}} \right) + \frac{1}{2}P_{2} \left( {L_{3}^{2} - L_{2}^{2} } \right) \\ & \quad - \frac{1}{{K^{2} }}\left( { - \frac{{K(1 - L_{3} )}}{{H_{3} }} - \frac{{K^{2} (1 - L_{3} )^{2} }}{{2H_{{_{3} }}^{2} }} - \sum\limits_{n = 3}^{\infty } {\frac{{K^{n} (1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} - \frac{{(1 - L_{3} )}}{{H_{3} }} - \frac{{K(1 - L_{3} )^{2} }}{{2H_{{_{3} }}^{2} }} - \frac{{K^{2} (1 - L_{3} )^{3} }}{{3H_{{_{3} }}^{3} }} - \sum\limits_{n = 4}^{\infty } {\frac{{K^{n - 1} (1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} + (1 - L_{3} ) + \frac{{K(1 - L_{{_{3} }}^{2} )}}{2}} \right) \\ & \quad + \frac{Q}{{K^{2} }}\left( { - \left( {\frac{{K(1 - L_{3} )}}{{H_{3} }}} \right) + \frac{{(1 - L_{3} )}}{{H_{3} }} + \frac{{K(1 - L_{3} )^{2} }}{{2H_{{_{3} }}^{2} }} + \frac{{K^{2} (1 - L_{3} )^{3} }}{{3H_{{_{3} }}^{3} }} + \sum\limits_{n = 4}^{\infty } {\frac{{K^{n - 1} (1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} - \frac{{(1 - L_{3} )}}{{H_{3} }} + \frac{{K(1 - L_{3}^{2} )}}{2}} \right) \\ & \quad - WL_{\text{pv}} = 0 \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(71)

An arranged form is expressed as follows.

$$ \begin{aligned} M & = \frac{{L_{2}^{3} }}{{3H_{1}^{3} }} - Q\frac{{L_{2}^{3} }}{{H_{1}^{2} H_{2} }} + Q\frac{{L_{2}^{3} }}{{3H_{1}^{3} }} + \sum\limits_{n = 3}^{\infty } {\frac{{L_{2}^{n} }}{{nH_{1}^{n} }}} K^{n - 2} + (1 + Q)\sum\limits_{n = 4}^{\infty } {\frac{{L_{2}^{n} }}{{nH_{1}^{n} }}} K^{n - 3} \\ & \quad + \frac{{(L_{3} - L_{2} )^{2} L_{2} }}{{2H_{{2{\text{d}}}}^{2} }} + (1 + H_{\text{d}} )\frac{{(L_{3} - L_{2} )^{3} }}{{3H_{{2{\text{d}}}}^{3} }} - Q\frac{{(L_{3} - L_{2} )^{2} L_{3} }}{{H_{{2{\text{d}}}}^{2} H_{{3{\text{d}}}} }} + Q\frac{{(L_{3} - L_{2} )^{3} }}{{3H_{{2{\text{d}}}}^{3} }} \\ & \quad + \sum\limits_{n = 3}^{\infty } {\frac{{(L_{3} - L_{2} )^{n} }}{{nH_{{2{\text{d}}}}^{n} }}} K^{n - 2} + (1 + H_{\text{d}} + Q)\sum\limits_{n = 4}^{\infty } {\frac{{(L_{3} - L_{2} )^{n} }}{{nH_{{2{\text{d}}}}^{n} }}} K^{n - 3} + \frac{{P_{2} }}{2}(L_{3}^{2} - L_{2}^{2} ) \\ & \quad + \frac{{(H_{3} - 1)(1 - L_{3} )^{3} }}{{2H_{3}^{2} }} - \frac{{(1 - L_{3} )^{2} }}{{2H_{3}^{2} }} + \frac{{(1 - L_{3} )^{3} }}{{3H_{3}^{3} }} - Q\left( {\frac{{(H_{3} + 1)(1 - L_{3} )^{3} }}{{2H_{3}^{2} }} - \frac{{(1 - L_{3} )^{2} }}{{H_{3} }} - \frac{{(1 - L_{3} )^{3} }}{{3H_{3}^{3} }}} \right) \\ & \quad + \sum\limits_{n = 3}^{\infty } {\frac{{(1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} K^{n - 2} + (1 + Q)\sum\limits_{n = 4}^{\infty } {\frac{{(1 - L_{3} )^{n} }}{{nH_{3}^{n} }}} K^{n - 3} \\ & \quad - WL_{\text{pv}} = 0 \\ & \quad - 1 < \frac{{KL_{2} }}{{H_{1} }} < 1, - 1 < \frac{{K(L_{3} - L_{2} )}}{{H_{{2{\text{d}}}} }} < 1, - 1 < \frac{{K(1 - L_{3} )}}{{H_{3} }} < 1 \\ \end{aligned} $$
(72)

In the parallel case (K = 0), Eq. (72) becomes

$$ \begin{aligned} M &= \frac{{L_{2}^{3} }}{3} - Q\frac{{2L_{2}^{3} }}{3} \hfill \\ &\quad+ \frac{{(L_{3} - L_{2} )^{2} L_{2} }}{{2(1 + H_{\text{d}} )^{2} }} + \frac{{(L_{3} - L_{2} )^{3} }}{{3(1 + H_{\text{d}} )^{2} }} - Q\frac{{(L_{3} - L_{2} )^{2} L_{3} }}{{(1 + H_{\text{d}} )^{3} }} + Q\frac{{(L_{3} - L_{2} )^{3} }}{{3(1 + H_{\text{d}} )^{3} }} \hfill \\ &\quad +\frac{{P_{2} }}{2}(L_{3}^{2} - L_{2}^{2} ) - \frac{{(1 - L_{3} )^{2} }}{2} + \frac{{(1 - L_{3} )^{3} }}{3} - \frac{{2Q(1 - L_{3} )^{3} }}{3} + Q(1 - L_{3} )^{2} \hfill \\ &\quad- WL_{\text{pv}} = 0 \hfill \\ \end{aligned} $$
(73)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, K., Sugimura, J. Balancing Wedge Action: A Contribution of Textured Surface to Hydrodynamic Pressure Generation. Tribol Lett 50, 349–364 (2013). https://doi.org/10.1007/s11249-013-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0132-z

Keywords

Navigation