Skip to main content
Log in

Collective Effects at Frictional Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We discussed the role of the long-range elastic interaction between the contacts inside an inhomogeneous frictional interface. The interaction produces a characteristic elastic correlation length λc = a 2 E/k c (where a is the distance between the contacts, k c is the elastic constant of a contact, and E is the Young modulus of the sliding body), below which the slider may be considered as a rigid body. The strong inter-contact interaction leads to a narrowing of the effective threshold distribution for contact breaking and enhances the chances for an elastic instability to appear. Above the correlation length, r > λc, the interaction leads to screening of local perturbations in the interface, or to appearance of collective modes—frictional cracks propagating as solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (1998)

    Google Scholar 

  2. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79–158 (2006)

    Article  CAS  Google Scholar 

  3. Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992)

    Article  Google Scholar 

  4. Persson, B.N.J.: Theory of friction: Stress domains, relaxation, and creep. Phys. Rev. B 51, 13568–13585 (1995)

    Article  CAS  Google Scholar 

  5. Braun, O.M., Röder, J.: Transition from stick-slip to smooth sliding: an earthquakelike model. Phys. Rev. Lett. 88, 096102-1–4 (2002)

    Google Scholar 

  6. Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503-1–4 (2004)

    Article  Google Scholar 

  7. Farkas, Z., Dahmen, S.R., Wolf, D.E.: Static versus dynamic friction: the role of coherence. J. Stat. Mech.: Theory and Experiment P06015 (2005), and cond-mat/0502644

  8. Braun, O.M., Peyrard, M.: Modeling friction on a mesoscale: master equation for the earthquakelike model. Phys. Rev. Lett. 100, 125501-1–4 (2008)

    Article  Google Scholar 

  9. Braun, O.M., Tosatti, E.: Kinetics of stick-slip friction in boundary lubrication. Europhys. Lett. 88, 48003-1–6 (2009)

    Article  Google Scholar 

  10. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301-1–4 (2009)

    Google Scholar 

  11. Braun, O.M., Peyrard, M.: Master equation approach to friction at the mesoscale. Phys. Rev. E 82, 036117-1–19 (2010)

    Article  Google Scholar 

  12. Braun, O.M., Peyrard, M.: Dependence of kinetic friction on velocity: master equation approach. Phys. Rev. E 83, 046129-1–9 (2011)

    Google Scholar 

  13. Braun, O.M., Tosatti, E.: Kinetics and dynamics of frictional stick-slip in mesoscopic boundary lubrication. Phil. Mag. 91, 3253–3275 (2011)

    Article  CAS  Google Scholar 

  14. Larkin, A.I., Ovchinnikov, Yu.N.: Pinning in type-II superconductors. J. Low. Temp. Phys. 34, 409–428 (1979)

    Article  Google Scholar 

  15. Persson, B.N.J., Tosatti, E.: Theory of friction: elastic coherence length and earthquake dynamics. Solid State Commun. 109, 739–744 (1999)

    Article  CAS  Google Scholar 

  16. Caroli, C., Nozieres, Ph.: Hysteresis and elastic interactions of microasperities in dry friction. Eur. Phys. J. B 4, 233–246 (1998)

    Article  CAS  Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1986)

    Google Scholar 

  18. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    Article  CAS  Google Scholar 

  19. Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184106-1–7 (2002)

    Google Scholar 

  20. Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 312001-1–3 (2008)

    Google Scholar 

  21. Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214-1–13 (2008)

    Google Scholar 

  22. Almqvista, A., Campañá, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355–2369 (2011)

    Article  Google Scholar 

  23. Picard, G., Ajdari, A., Lequeux, F., Bocquet, L.: Elastic consequences of a single plastic event: a step towards the microscopic modeling of the flow of yield stress fluids. Eur. Phys. J. E 15, 371–381 (2004)

    Article  CAS  Google Scholar 

  24. Braun, O.M., Kivshar, Yu.S.: The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2004)

    Google Scholar 

  25. Sollich, P.: Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58, 738–759 (1998)

    Article  CAS  Google Scholar 

  26. Hébraud, P., Lequeux, F.:Mode-coupling theory for the pasty rheology of soft glassy materials. Phys. Rev. Lett. 81, 2934–2937 (1998)

    Article  Google Scholar 

  27. Bocquet, L., Colin, A., Ajdari, A.: Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001-1–4 (2009)

    Article  Google Scholar 

  28. Lemaître, A., Caroli, C.: Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett. 103, 065501-1–4 (2009)

    Article  Google Scholar 

  29. Caroli, C.: Slip pulses at a sheared frictional viscoelastic/nondeformable interface. Phys. Rev. E 62, 1729–1737 (2000)

    Article  CAS  Google Scholar 

  30. Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285–288 (2001)

    Article  CAS  Google Scholar 

  31. Greenwood, J.A.: The theory of viscoelastic crack propagation and healing. J. Phys. D 37, 2557–2569 (2004)

    Article  CAS  Google Scholar 

  32. Greenwood, J.A.: Viscoelastic crack propagation and closing with Lennard–Jones surface forces. J. Phys. D 40, 1769–1777 (2007)

    Article  CAS  Google Scholar 

  33. Vella, D., Boudaoud, A., Adda-Bedia, M.: Statics and inertial dynamics of a ruck in a rug. Phys. Rev. Lett. 103, 174301-1–4 (2009)

    Article  Google Scholar 

  34. Braun, O.M., Peyrard, M.: Crack in the frictional interface as a solitary wave. Phys. Rev. E (submitted) (2011)

  35. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)

    Google Scholar 

  36. Schmittbuhl, J., Vilotte, J.-P., Roux, S.: Propagative macrodislocation modes in an earthquake fault model. Europhys. Lett. 21, 375–380 (1993)

    Article  Google Scholar 

  37. Kierfeld, J., Vinokur, V.M.: Slow crack propagation in heterogeneous materials. Phys. Rev. Lett. 96, 175502-1–4 (2006)

    Article  Google Scholar 

  38. Braun, O.M., Bishop, A.R., Röder, J.: Hysteresis in the underdamped driven Frenkel–Kontorova model. Phys. Rev. Lett. 79, 3692–3695 (1997)

    Article  CAS  Google Scholar 

  39. Holland, D., Marder, M.: Ideal brittle fracture of silicon studied with molecular dynamics. Phys. Rev. Lett. 80, 746–749 (1998)

    Article  CAS  Google Scholar 

  40. Braun, O.M., Bambi, H.u., Zeltser, A.: Driven kink in the Frenkel–Kontorova model. Phys. Rev. E 62, 4235–4245 (2000)

    Article  CAS  Google Scholar 

  41. Fineberg, J., Marder, M.: Instability in dynamics fracture. Phys. Rep. 313, 1–141 (1999)

    Article  CAS  Google Scholar 

  42. Braun, O.M.: Supersonic and multiple topological excitations in the driven Frenkel–Kontorova model with exponential interaction. Phys. Rev. E 62, 7315–7319 (2000)

    Article  CAS  Google Scholar 

  43. Guozden, T.M., Jagla, E.A.: Supersonic crack propagation in a class of lattice models of mode III brittle fracture. Phys. Rev. Lett. 95, 224302-1–4 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to E.A. Jagla, B.N.J. Persson, M. Urbakh, and S. Zapperi for helpful discussions. This study was supported in part by CNRS-Ukraine PICS grant No. 5421, by ESF Eurocore FANAS AFRI through CNR-Italy, by PRIN/COFIN 20087NX9Y7, and by the SNF Sinergia Project NPA1617. O.B. acknowledges hospitality at SISSA and ICTP Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Peyrard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, O.M., Peyrard, M., Stryzheus, D.V. et al. Collective Effects at Frictional Interfaces. Tribol Lett 48, 11–25 (2012). https://doi.org/10.1007/s11249-012-9913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9913-z

Keywords

Navigation