Skip to main content

Contact Mechanics of Laser-Textured Surfaces

Correlating Contact Area and Friction


We study numerically the contact mechanics of a flat and a curved solid. Each solid bears laser-induced, periodic grooves on its rubbing surface. Our surface topographies produce a similar load and resolution dependence of the true contact area as nominally flat, but randomly rough, self-affine surfaces. However, the contact area of laser-textured solids depends on their relative orientation. The estimated true contact areas correlate with kinetic friction measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Shinjo, K., Hirano, M.: Dynamics of friction: superlubric state. Surf. Sci. 283, 473–478 (1993)

    Article  CAS  Google Scholar 

  2. 2.

    Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’ laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)

    Article  Google Scholar 

  3. 3.

    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, Article No. 126101 (2004)

  4. 4.

    Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Article  Google Scholar 

  5. 5.

    Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  6. 6.

    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003)

    Article  CAS  Google Scholar 

  7. 7.

    Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., Etsion, I.: Friction and wear of MoS(2) films on laser textured steel surfaces. Surf. Coat. Technol. 202, 3332–3340 (2008)

    Article  CAS  Google Scholar 

  8. 8.

    Sung, I.H., Lee, H.S., Kim, D.E.: Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear 254, 1019–1031 (2003)

    Article  CAS  Google Scholar 

  9. 9.

    Bowden, F.P., Tabor, D.: Friction and lubrication. Wiley, New York (1956)

    Google Scholar 

  10. 10.

    Berman, A., Drummond, C., Israelachvili, J.N.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)

    Article  CAS  Google Scholar 

  11. 11.

    He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)

    Article  CAS  Google Scholar 

  12. 12.

    Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  13. 13.

    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    Article  CAS  Google Scholar 

  14. 14.

    Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  CAS  Google Scholar 

  15. 15.

    Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  16. 16.

    Shengfeng, C., Robbins, M.O.: Defining contact at the atomic scale. Tribol. Lett. 39, 329–348 (2010)

    Article  Google Scholar 

  17. 17.

    Eder, S., Vernes, A., Vorlaufer, G., Betz, G.: Molecular dynamics simulations of mixed lubrication with smooth particle post-processing. J. Phys. Condens. Matter 23, Article No. 175004 (2011)

  18. 18.

    Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., Mücklich, F.: Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol. Lett. doi:10.1007/s11249-012-0057-y

  19. 19.

    Yao, Y., Schlesinger, M., Drake, G.W.F.: A multiscale finite-element method for solving rough-surface elasticcontact problems. Can. J. Phys. 82, 679–699 (2004)

    Article  CAS  Google Scholar 

  20. 20.

    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    Article  CAS  Google Scholar 

  21. 21.

    Carvill, J.: Mechanical Engineers Data Handbook I. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  22. 22.

    Gao, F., Leach, R., Petzing, J., Coupland, J.: Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 19, Article No. 015303 (2008)

  23. 23.

    Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, Article No. 075420 (2006)

  24. 24.

    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, Article No. 244301 (2012)

  25. 25.

    Persson, B.N.J.: Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett. 99, Article No. 125502 (2007)

  26. 26.

    Campañá, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys. Condens. Matter 23, Article No. 085001 (2011)

  27. 27.

    Sun, F., Van der Giessen, E., Nicola, L.: Plastic flattening of a sinusoidal metal surface: a discrete dislocation plasticity study. Wear 296, 672–680 (2012)

    Article  CAS  Google Scholar 

  28. 28.

    Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, Article No. 026117 (2004)

  29. 29.

    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005–38007 (2007)

    Article  Google Scholar 

  30. 30.

    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Solids 60, 973–982 (2012)

    Article  Google Scholar 

Download references


N.P. and M.H.M. are grateful for computing time on JUROPA at the FZ Jülich Supercomputing Centre. MHM acknowledges support from the German Research Foundation (DFG) through grant Mu 1694/5-1.

Author information



Corresponding author

Correspondence to Martin H. Müser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prodanov, N., Gachot, C., Rosenkranz, A. et al. Contact Mechanics of Laser-Textured Surfaces. Tribol Lett 50, 41–48 (2013).

Download citation


  • Contact mechanics
  • Friction
  • Material treatment effects