Skip to main content
Log in

Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The paper considers elastic contact of rough surfaces and develops a simple analytical expression for the stiffness of the contact under tangential loading, which predicts that the contact stiffness is proportional to normal load and independent of Young’s Modulus. The predictions of this model are compared to a full numerical analysis of a rough elastic contact of finite size. The two approaches are found to be in good agreement at low loads, when the asperity spacing is large, but the numerical approach predicts much lower stiffnesses at medium and high loads. It is shown that the overall stiffness cannot exceed that of the equivalent smooth contact, and a simple means of modifying the analytical approach is proposed and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The fact that the theorem provides results for Poisson’s ratio equal to zero implies that the tangential and normal stiffness computed using this technique are identical (see Eq. (30)). We have implemented the tangential stiffness calculations to perform explicit comparisons between the analytical and the numerical results.

References

  1. Dowson, D.: History of Tribology. Professional Engineering Publishing, London (1998)

    Google Scholar 

  2. Amontons, G.: De la résistance causée dans les machines. Mémoires de l’Académie Royale A 257–282 (1699)

  3. Coulomb, C.A.: Théorie des machines simples, en eyant égard au frottement de leurs parties et a la roideur des cordages. Mémoires de Mathématique et de Physique de l’Académie Royale 161–342 (1785)

  4. Hertz, H.: Uber die Beruhrung fester elasticher Korper. Jnl. reine und angewandte Mathematik 92, 156–171 (1882)

    Google Scholar 

  5. Cattaneo, C.: Sul contatto di due corpi elastici: distribuzion locale degli sforzi. Reconditi dell Accademia nazionale dei Lincei 27, 342–348, 434–436, 474–478 (1938)

  6. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)

    Google Scholar 

  7. Johnson, K.L.: Surface interaction between elastically loaded bodies under tangential forces. Proc. R. Soc. A320, 531–548 (1955)

    Google Scholar 

  8. Greenwood, J.A., Williamson, J.P.B.: Contact of nominally flat surfaces. Proc. R. Soc. A295, 300–319 (1966)

    Google Scholar 

  9. Nowell, D., Dini, D., Hills, D.A.: Recent developments in the understanding of Fretting Fatigue. Eng. Fract. Mech. 73, 207–222 (2006)

    Article  Google Scholar 

  10. Petrov, E.P., Ewins, D.J.: Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. Trans. ASME: J. Turbomach. 128(2), 403–410 (2006)

    Article  Google Scholar 

  11. Kartal, M.E., Mulvihill, D.M., Nowell, D., Hills, D.A.: Determination of the frictional properties of titanium and nickel alloys using the digital image correlation method. Exp. Mech. 51(3), 359–371 (2011)

    Article  CAS  Google Scholar 

  12. Filippi, S., Akay, A., Gola, M.M.: Measurement of tangential contact hysteresis during microslip. Trans. ASME: J. Tribol. 126, 482–489 (2004)

    Article  Google Scholar 

  13. Berthoud, P., Baumberger, T.: Shear stiffness of a solid–solid multicontact interface. Proc. R. Soc. A: Math. Phys. Eng. Sci. 454, 1615–1634 (1998)

    Article  CAS  Google Scholar 

  14. Królikowski, J., Szczepek, J.: Assessment of tangential and normal stiffness of contact between rough surfaces using ultrasonic methods. Wear 160, 253–258 (1993)

    Article  Google Scholar 

  15. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  16. Kartal, M.E., Mulvihill, D.M., Nowell, D., Hills, D.A.: Measurements of pressure and area dependent tangential contact stiffness between rough surfaces using digital image correlation. Tribol. Int. 44, 1188–1198 (2011)

    Article  CAS  Google Scholar 

  17. Medina, S., Dini, D., Olver, A.V., Hills, D.A.: Fast computation of frictional energy dissipation in rough contacts under partial slip. Proceedings of the STLE/ASME International Joint Tribology Conference, IJTC 2008, pp. 573–575. ASME (2009)

  18. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. 106, 204301 (2011)

    Article  Google Scholar 

  19. Campañá, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys.: Condens. Matter 23, 085001 (2011)

    Article  Google Scholar 

  20. Putignano, C., Ciavarella, M., Barber, J.R.: Frictional energy dissipation in contact of nominally flat rough surfaces under harmonically varying loads. J. Mech. Phys. Solids 59, 2442–2454 (2011)

    Article  Google Scholar 

  21. Jaeger, J.: New Solutions in Contact Mechanics. WIT Press, Southampton, UK (2005)

    Google Scholar 

  22. Greenwood, J.A.: Constriction resistance and the real area of contact. Brit. J. Appl. Phys. 17, 1621–1632

  23. Barber, J.R.: Bounds on the electrical resistance between contacting elastic rough bodies. Proc. R. Soc. Lond. A 459, 53–66 (2003)

    Article  Google Scholar 

  24. Beck, J.V.: Effects of multiple sources in the contact conductance theory. Trans. ASME—J. Heat Transf. 101(1), 132–136 (1979)

    Article  Google Scholar 

  25. Das, A.K., Sadhal, S.S.: Thermal constriction resistance between two solids for random distribution of contacts. Heat Mass. Transf. 35, 101–111 (1999)

    Article  CAS  Google Scholar 

  26. Venner, C.H., Lubrecht, A.A.: Multilevel Methods in Lubrication. Tribology Series 37Elsevier, Amsterdam (2000)

    Google Scholar 

  27. Ciavarella, M.: The generalized Cattaneo partial slip plane contact problem. I—Theory, II—Examples. Int. J. Solids Struct. 35, 2349–2378 (1998)

    Article  Google Scholar 

  28. Jäger, J.: A new principle in contact mechanics. Trans. ASME: J. Tribol. 120, 677–684 (1998)

    Article  Google Scholar 

  29. Dini, D., Hills, D.A.: Frictional energy dissipation in a rough hertzian contact. Trans. ASME: J. Tribol. 131, Paper No. 021401 (2009)

  30. Medina, S., Olver, A.V., Dini, D.: The influence of surface topography on energy dissipation and compliance in tangentially loaded elastic contacts, Trans. ASME: J. Tribol. 134, Paper No. 011401 (2012)

  31. Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. Proc. R. Soc. A: Math. Phys. Eng. Sci. 316, 97–121 (1970)

    Article  Google Scholar 

  32. Johnson, K.L., Greenwood, J.A., Poon, S.Y.: A simple theory of asperity contact in elastohydrodynamic lubrication. Wear 19, 91–108 (1972)

    Article  Google Scholar 

  33. Gonzalez-Valadez, M., Baltazar, A., Dwyer-Joyce, R.S.: Study of interfacial stiffness ratio of a rough surface in contact using a spring model. Wear 268, 373–379 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council under grant numbers EP/E058337/1 and EP/E057985/1. The authors are grateful to Professor J.R. Barber for suggesting the unit cell approach presented in Sect. 2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, S., Nowell, D. & Dini, D. Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts. Tribol Lett 49, 103–115 (2013). https://doi.org/10.1007/s11249-012-0049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0049-y

Keywords

Navigation