Skip to main content
Log in

Experimental Research on Force Transmission of Dense Granular Assembly Under Shearing in Taylor–Couette Geometry

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Considering the difficulties in experimental research on journal bearings under granular lubrication, we have designed and developed a Taylor–Couette geometry tester to study granule behavior under shearing. Surface structure, granularity, granular material, filling amount, gap eccentricity, and granular distribution are considered in our experiments. The measured torque, which is transmitted from the inner to the outer cylinder, reveals the effect of these input parameters on force transmission behavior. Results show that a rough surface, a high filling amount, a heavy material, and a eccentricity geometry increase the measured torque. The effects of granularity, cylinder–granule slip, granule distribution, and torque mutation are discussed as well. Force transmission is directly affected by cylinder–granule contact and force transmission path in granule assembly. The cylinder and granule contact occurs through the cylinder–granule slip and granular collision. The force transmission path in the granule assembly is dependent on the formation or breakage of the arch and the force chain, which is closely related to flow state. In the article, some direct links between the experimental results and the optimization of an actual granular lubricated journal bearing are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F.: A review of dry particulate lubrication: powder and granular materials. J. Tribol. 129, 438–449 (2007)

    Article  CAS  Google Scholar 

  2. Khonsari, M.M.: On the modeling of multi-body interaction problems in tribology. Wear 207, 55–62 (1997)

    Article  CAS  Google Scholar 

  3. Iordanoff, I., Berthier, Y., Descartes, S., Heshmat, H.: A review of recent approaches for modeling solid third bodies. J. Tribol. 124, 725–735 (2002)

    Article  Google Scholar 

  4. Renouf, M., Cao, H.P., Nhu, V.H.: Multiphysical modeling of third-body rheology. Tribol. Int. 44, 417–425 (2011)

    Article  Google Scholar 

  5. Wornyoh, E.Y.A., Higgs, C.F.: An asperity-based fractional coverage model for transfer films on a tribological surface. Wear 270, 127–139 (2011)

    Article  CAS  Google Scholar 

  6. Heshmat, H.: The effect of slider geometry on the performance of a powder lubricated bearing—theoretical considerations. Tribol. Trans. 43, 213–220 (2000)

    Article  CAS  Google Scholar 

  7. Heshmat, H., Godet, M., Berthier, Y.: On the role and mechanism of dry triboparticulate lubrication. Lubric. Eng. 51, 557–564 (1995)

    CAS  Google Scholar 

  8. Heshmat, H.: The quasi-hydrodynamic mechanism of powder lubrication. 3: on theory and rheology of triboparticulates. Tribol. Trans. 38, 269–276 (1995)

    Article  CAS  Google Scholar 

  9. Higgs, C.F., Wornyoh, E.X.A.: An in situ mechanism for self-replenishing powder transfer films: experiments and modeling. Wear 264, 131–138 (2008)

    Article  CAS  Google Scholar 

  10. Lovell, M.R., Kabir, M.A., Menezes, P.L., Higgs, C.F.: Influence of boric acid additive size on green lubricant performance. Philos. Trans. R. Soc. A 368, 4851–4868 (2010)

    Article  CAS  Google Scholar 

  11. Wang, W., Liu, X.J., Xie, T., Liu, K.: Effects of sliding velocity and normal load on tribological characteristics in powder lubrication. Tribol. Lett. 43, 213–219 (2011)

    Article  Google Scholar 

  12. Wang, W., Liu, X.J., Liu, K., Li, H.X.: Experimental study on the tribological properties of powder lubrication under plane contact. Tribol. Trans. 53, 274–279 (2010)

    Article  CAS  Google Scholar 

  13. Batista-Leyva, A.J., Pacheco-Vazquez, F., Ruiz-Suarez, J.C.: Role of density in granular lubrication. Phys. Rev. E 82, 031304 (2010)

    Article  CAS  Google Scholar 

  14. Tichy, J., Berthier, Y., Iordanoff, I.: A continuum description of dense granular lubrication flow. J. Tribol. 130, 031301 (2008)

    Article  Google Scholar 

  15. Iordanoff, I., Elkholy, K., Khonsari, M.M.: Effect of particle size dispersion on granular lubrication regimes. Proc. IME. J J. Eng. Tribol. 222, 725–739 (2008)

    Article  CAS  Google Scholar 

  16. Jang, J.Y., Khonsari, M.M.: On the granular lubrication theory. Proc. R. Soc. A 461, 3255–3278 (2005)

    Article  Google Scholar 

  17. Jasti, V.K., Higgs, C.F.: A fast first order model of a rough annular shear cell using cellular automata. Granul. Matter 12, 97–106 (2010)

    Article  Google Scholar 

  18. Kabir, M.A., Lovell, M.R., Higgs, C.F.: Utilizing the explicit finite element method for studying granular flows. Tribol. Lett. 29, 85–94 (2008)

    Article  Google Scholar 

  19. Higgs, C.F., Tichy, J.: Granular flow lubrication: continuum modeling of shear behavior. J. Tribol. 126, 499–510 (2004)

    Article  Google Scholar 

  20. Heshmat, H.: Tribology of Interface Layers. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  21. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  CAS  Google Scholar 

  22. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  CAS  Google Scholar 

  23. Campbell, C.S.: Granular material flows—an overview. Powder Technol. 162, 208–229 (2006)

    Article  CAS  Google Scholar 

  24. Kabir, M.A., Jasti, V.K., Higgs, C.F., Lovell, M.R.: An evaluation of the explicit finite-element method approach for modelling dense flows of discrete grains in a couette shear cell. Proc. IME. J J. Eng. Tribol. 222, 715–723 (2008)

    Article  CAS  Google Scholar 

  25. Higgs, C.F., Tichy, J.: Effect of particle and surface properties on granular lubrication flow. Proc. IME. J J. Eng. Tribol. 222, 703–713 (2008)

    Article  CAS  Google Scholar 

  26. Iordanoff, I., Khonsari, M.M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol.-Trans. ASME 126, 137–145 (2004)

    Article  Google Scholar 

  27. Yu, C.M., Craig, K., Tichy, J.: Granular collision lubrication. J. Rheol. 38, 921–936 (1994)

    Article  CAS  Google Scholar 

  28. Yu, C.M., Tichy, J.: Granular collisional lubrication: effect of surface roughness, particle size and solids fraction. Tribol. Trans. 39, 537–546 (1996)

    Article  CAS  Google Scholar 

  29. Elkholy, K.N., Khonsari, M.M.: Granular collision lubrication: experimental investigation and comparison to theory. J. Tribol. 129, 923–932 (2007)

    Article  Google Scholar 

  30. Elkholy, K.N., Khonsari, M.M.: Experimental investigation on the stick–slip phenomenon in granular collision lubrication. J. Tribol. 130, 021302 (2008)

    Article  Google Scholar 

  31. Jasti, V., Higgs, C.F.: Experimental study of granular flows in a rough annular shear cell. Phys. Rev. E 78, 041306 (2008)

    Article  Google Scholar 

  32. Marinack, M.C., Jasti, V.K., Choi, Y.E., Higgs, C.F.: Couette grain flow experiments: the effects of the coefficient of restitution, global solid fraction, and materials. Powder Technol. 211, 144–155 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from the National Natural Science Foundation of China under Grant No. 51005067 and Grant No. 51175136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Liu, X. & Liu, K. Experimental Research on Force Transmission of Dense Granular Assembly Under Shearing in Taylor–Couette Geometry. Tribol Lett 48, 229–236 (2012). https://doi.org/10.1007/s11249-012-0009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0009-6

Keywords

Navigation