Skip to main content
Log in

Effect of Gear Surface and Lubricant Interaction on Mild Wear

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, a twin-disc test machine was used to simulate a rolling/sliding gear contact for three surface finishes, each run with two types of lubricants, thus seeking to develop insight into the tooth flank/lubricant tribological system. The test disc surfaces were case-carburised before the surfaces were produced by: transverse grinding followed by a mechanical abrasive polishing process; transverse grinding only; and transverse grinding followed by preheating as a final finishing step (intended to enhance the build-up of an easily sheared surface boundary layer using a sulphur additive). The twin-disc contact was lubricated with an ester-based environmentally adapted lubricant or a polyalphaolefin-based commercial heavy truck gearbox lubricant. To obtain information about the composition of chemically reacted surface layers, the specimens used were analysed using glow discharge-optical emission spectroscopy. The results indicate that the interactions between different surface finishes and lubricants have different impacts on friction behaviour, wear and the reacted surface boundary layer formed by the lubricant. Running a smooth (polished) surface with the appropriate lubricant drastically reduces the friction. Surface analysis of the ground surfaces gives clear differences in lubricant characteristics. The commercial lubricant does not seem to react chemically with the surface to the same extent as the EAL does. Micropitting was found on all ground discs with both lubricants, though at different rates. The highest amount of wear but less surface damage (i.e. micropits) was found on the preheated surface run with the commercial lubricant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. ISO 6336-1:2006(E), Calculation of the load capacity of spur and helical gears. Part 1 Basic principles introduction, and general influence factors

  2. Bergseth, E., Torbacke, M., Olofsson, U.: Wear in environmentally adapted lubricant with AW technology. J. Synth. Lubr. 25, 137–158 (2008). doi:10.1002/jsl.57

    Article  CAS  Google Scholar 

  3. Kleemola, J., Lehtovaara, A.: Experimental simulation of gear contact along the line of action. Tribol. Int. 42, 1453–1459 (2009)

    Article  Google Scholar 

  4. Castro, J., Seabra, J.: Coefficient of friction in mixed film lubrication: gears versus twin-discs. Proc. Inst. Mech. Eng. J. Eng. Tribol. 221, 399–411 (2007). doi:10.1243/13506501JET257

    Article  Google Scholar 

  5. Brandão, J.A., Seabra, J.H.O., Castro, J.: Surface initiated tooth flank damage. part I Numerical model. Wear 268, 1–12 (2010)

    Article  Google Scholar 

  6. Brechot, P., Cardin, A.B., Murphy, W.R., Theissen, J.: Micropitting resistant industrial gear oils with balanced performance. Ind. Lubr. Tribol. 52(3), 125–136 (2000)

    Article  Google Scholar 

  7. Sjöberg, S., Björklund, S., Olofsson, U.: The influence of manufacturing method on the running-in of gears. Proc. Inst. Mech. Eng. J. Eng. Tribol. 225, 999–1012 (2011). doi:10.1177/1350650111414471

    Article  Google Scholar 

  8. Widmark, M., Melander, A.: Effect of material, heat treatment, grinding and shot peeing on contact fatigue life of carburized steels. Int. J. Fatigue 21, 309–327 (1999)

    Article  CAS  Google Scholar 

  9. Höhn, B.-R., Michaelis, K., Doleschel, A.: Frictional behaviour of synthetic gear lubricants. Tribol. Series 39, 759–768 (2001)

    Google Scholar 

  10. Björling, M., Larsson, R., Marklund, P., Kassfeldt, E.: Elastohydrodynamic lubrication friction mapping—the influence of lubricant, roughness, speed, and slide-to-roll ratio. Proc. Inst. Mech. Eng. J. Eng. Tribol. 225, 671–681 (2011)

    Article  Google Scholar 

  11. Patir, N., Cheng, H.S.: An average flow model for determining the effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol Trans. ASME 100, 12–17 (1978)

    Article  Google Scholar 

  12. Höhn, B.-R., Michaelis, K., Kreil, O.: Influence of surface roughness on pressure distribution and film thickness in EHL-contacts. Tribol. Int. 39, 1719–1725 (2006)

    Article  Google Scholar 

  13. Petry-Johnson, T.T., Kaharaman, A., Anderson, N.E., Chase, D.R.: Experimental investigation of spur gear efficiency. J. Mech. Des. 130, 0626011–06260110 (2008)

    Article  Google Scholar 

  14. Dizdar, S., Andersson, S.: Influence of the pre-formed boundary layers on wear transition in sliding lubricated contacts. Wear 213, 117–122 (1997)

    Article  CAS  Google Scholar 

  15. Fletcher, D.I., Beynon, J.H.: Development of a machine for closely controlled rolling contact fatigue and wear testing. J. Test. Eval. 28, 267–275 (2000)

    Article  CAS  Google Scholar 

  16. Lewis, R., Dwyer-Joyce, R.S.: Wear mechanisms and transitions in railway wheel steels. Proc. Inst. Mech. Eng. J. Eng. Tribol. 218, 467–478 (2004)

    Article  Google Scholar 

  17. Krantz, T.L., Alanou, M.P., Evans, H.P., Snidle, R.W.: Surface fatigue lives of case-carburized gears with an improved surface finish. J. Tribol. 123, 709–716 (2001)

    Article  CAS  Google Scholar 

  18. Gallardo-Hernandez, E.A., Lewis, R.: Coating and treatment solutions for rolling/sliding component contacts. Wear 267, 1009–1021 (2009)

    Article  Google Scholar 

  19. Martins, R., Locatelli, C., Seabra, J.: Evolution of tooth flank roughness during gear micropitting tests. Ind. Lubr. Tribol. 63, 34–45 (2011)

    Article  Google Scholar 

  20. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York (1994)

    Google Scholar 

  21. Guideline for Testing of Chemicals, Information Taken From Organisation for Economic Co-Operation and Development (OECD). http://www.oecd.org (2011). Accessed 26 June 2011

  22. Torbacke, M., Kassman Rudolphi , Å., Kassfeldt, E.: Lubricants—Properties and Performance. Universitetstryckeriet, Luleå (2012)

  23. Godfrey, D.: In: Ku, P.M. (ed.) Interdisciplinary Approach to Friction and Wear, p. 335. Southwest Institute, Washington DC (1968)

    Google Scholar 

  24. McFadden, C., Soto, C., Spencer, N.D.: Adsorption and surface chemistry in tribology. Tribol. Int. 30, 881–888 (1997)

    Article  CAS  Google Scholar 

  25. ISO 14707:2000 (E), Surface chemical analysis: glow discharge optical emission spectroscopy (GD-OES)—introduction to use, first edition 2000-08-15

  26. Veronesit, V.: Influence of a low temperature sulphurizing process on lubricants in standard EP and FZG tests. Tribol. Int. 18(4), 203–208 (1985)

    Article  Google Scholar 

  27. Oila, A., Bull, S.J.: Assessment of the factors influencing micropitting in rolling/sliding contacts. Wear 258, 1510–1524 (2005)

    Article  CAS  Google Scholar 

  28. Olver, A.V., Tiew, L.K., Medina, S., Choo, J.W.: Direct observations of a micropit in an elastohydrodynamic contact. Wear 256, 168–175 (2004)

    Article  CAS  Google Scholar 

  29. Hannes, D., Alfredsson, B.: Rolling contact fatigue crack path prediction by the asperity point load mechanism. Eng. Fract. Mech. 78, 2848–2869 (2011)

    Article  Google Scholar 

  30. Höglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Statoil Lubricants, Primateria, Alexander Drott at Volvo Powertrain Köping for analysing the material structure and providing the photos for 13b, and Vinnova’s KUGG research programme for the opportunity to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Bergseth.

Appendices

Appendix

Film thickness equations for elliptical and rectangular conjunctions are applied to specific machine elements, other than the rolling-element bearings, by Hamrock [20] to illustrate how fluid film lubrication conditions can be analysed. Two disc pairs, i.e. ground/ground (elliptical contact, crowning set to 25 μm) reference discs and polished/polished (rectangular contact), are used as input with the set load. Note that the pressure viscosities were not measured at lubricant bulk temperature and pure rolling is assumed in the calculations. The EAL (ester) is assumed to have a similar pressure viscosity coefficient as the commercial lubricant (PAO), for which the pressure viscosity coefficient is taken from Höglund [30].

The minimum film thickness for the elliptical conjunction is given by:

$$ H = h/R = 3.63U^{0.68} G^{0.49} W^{ - 0.073} (1 - e^{{ - 0.68{\text{k}}}} ) $$
(A1)

The minimum film thickness for the rectangular conjunction is given by:

$$ H^{\prime } = h^{\prime } /R^{\prime } = 1.714(W^{\prime } )^{ - 0.128} U^{0.694} G^{0.56} $$
(A2)

The specific film parameter for the elliptical conjunction, the EHD film thickness for an ideal smoothness of the surfaces divided by the composite surface roughness, is given by:

$$ \Uplambda = h/({\text{Rq}}_{\text{a}}^{ 2} + {\text{Rq}}_{\text{b}}^{ 2} )^{ 1/ 2} $$
(A3)

The specific film parameter for the rectangular conjunction, the EHD film thickness for an ideal smoothness of the surfaces divided by the composite surface roughness, is given by:

$$ \Uplambda^{\prime } = h^{\prime } /({\text{Rq}}_{\text{a}}^{ 2} + {\text{Rq}}_{\text{b}}^{ 2} )^{ 1/ 2} $$
(A4)

List of Symbols

b :

Disc width, m

E :

Effective Young’s modulus, E = 2[(1−ν 2a )/E a + (1−ν 2b )/E b]−1, Pa

E a, b :

Young’s modulus, Pa

G :

Dimensionless material parameter, G = 

h :

Minimum film thickness, m

h′:

Minimum film thickness for rectangular conjunction, m

H :

Dimensionless film thickness, h/R

H′:

Dimensionless film thickness for rectangular conjunction, h′/R′

k :

Ellipticity parameter, k = (R y /R x)2/π

R :

Effective radius ground discs, R −1 = [r −1ax  + r −1bx ]−1 + [r −1ay  + r −1by ]−1, m

R′ :

Effective radius polished discs, R −1 = [r −1ax  + r −1bx ]−1, m

Rq:

RMS roughness, μm

U :

Dimensionless speed parameter, U =  0 /ER

u :

Mean surface velocity on the pitch line, u = (ω a ·r a  + ω b ·r b )/2, m/s

W :

Dimensionless load parameter, W = w z /E′R 2

W′:

Dimensionless load parameter, W′ = w z /ERb

w z :

Normal load component, N

α :

Pressure–viscosity coefficient at 40 °C, Pa−1

Λ :

Specific film parameter for elliptical conjunction

Λ′:

Specific film parameter for rectangular conjunction

η 0 :

Dynamic viscosity at 40 °C, Pa s

ω:

Angular velocity, rad s−1

2.1 Index

a, b :

Body a, b

0:

Reference value at atmospheric pressure

x :

Direction of motion

y:

Direction perpendicular to motion

z :

Normal direction

2.2 Input data

  • b = 0.010 m

  • E a, b = 207 GPa

  • r a, b = 0.0253 m

  • R = 0.01120 m

  • R′ = 0.0118 m

  • Rq = 1.1 μm

  • Rq′ = 0.06 μm

  • u = 1.04 m/s

  • α = 15.5 GPa−1

  • ν a, b = 0.293

  • w z = 7140 N

  • η0 = 0.0692 Pa s (EAL)

2.3 Results

  • E = 226 Pa

  • G = 3510

  • h = 0.27 μm

  • h′ = 0.19 μm

  • H = 2.41 × 10−5

  • H′ = 1.60 × 10−5

  • k = 7.0

  • U = 2.82 × 10−11

  • U′ = 2.70 × 10−11

  • W = 2.18 × 10−4

  • W′ = 2.5 × 10−4

  • Λ = 0.17

  • Λ′ = 2.2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergseth, E., Olofsson, U., Lewis, R. et al. Effect of Gear Surface and Lubricant Interaction on Mild Wear. Tribol Lett 48, 183–200 (2012). https://doi.org/10.1007/s11249-012-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0004-y

Keywords

Navigation