Skip to main content
Log in

1D Model of Precursors to Frictional Stick-Slip Motion Allowing for Robust Comparison with Experiments

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this article, we study the dynamic behaviour of 1D spring-block models of friction when the external loading is applied from a side, and not on all blocks like in the classical Burridge–Knopoff-like models. Such a change in the loading yields specific difficulties, both from numerical and physical viewpoints. To address some of these difficulties and clarify the precise role of a series of model parameters, we start with the minimalistic model by Maegawa et al. (Tribol. Lett. 38: 313, 2010) which was proposed to reproduce their experiments about precursors to frictional sliding in the stick-slip regime. By successively adding an (i) internal viscosity, (ii) interfacial stiffness and (iii) initial tangential force distribution at the interface, we manage to (i) avoid the model’s unphysical stress fluctuations, (ii) avoid its unphysical dependence on the spatial resolution and (iii) improve its agreement with the experimental results, respectively. Based on the behaviour of this improved 1D model, we develop an analytical prediction for the length of precursors as a function of the applied tangential load. We also discuss the relationship between the microscopic and macroscopic friction coefficients in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adams, G.G.: Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. J. Appl. Mech. 62, 867–872 (1995)

    Article  Google Scholar 

  2. Baumberger, T., Caroli, C.: Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)

    Article  Google Scholar 

  3. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002)

    Article  Google Scholar 

  4. Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)

    Article  CAS  Google Scholar 

  5. Ben-Zion, Y.: Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids 49, 2209–2244 (2001)

    Article  Google Scholar 

  6. Berthoud, P., Baumberger, T.: Shear stiffness of a solid-solid multicontact interface. Proc. R. Soc. A 454, 1615–1634 (1998)

    Article  CAS  Google Scholar 

  7. Bhushan, B.: Nanotribology and Nanomechanics. Springer, Heidelberg (2008)

    Google Scholar 

  8. Braun, O.M., Tosatti, E.: Kinetics and dynamics of frictional stick-slip in mesoscopic boundary lubrication. Philos. Mag. 91(24), 3253–3275 (2011)

    Article  CAS  Google Scholar 

  9. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  CAS  Google Scholar 

  10. Braun, O.M., Peyrard, M.: Modeling friction on a mesoscale: master equation for the earthquakelike model. Phys. Rev. Lett. 100, 125501 (2008)

    Article  CAS  Google Scholar 

  11. Brzoza, A., Pauk, V.: Torsion of rough elastic half-space by rigid punch. Arch. Appl. Mech. 78, 531–542 (2008)

    Article  Google Scholar 

  12. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341 (1967)

    Google Scholar 

  13. Candelier, R., Debrégeas, G., Prevost, A.: The role of exploratory conditions in bio-inspired tactile sensing of single topogical features. Sensors 11, 7934 (2011)

    Article  Google Scholar 

  14. Carlson, J.M., Langer, J.S.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632–2635 (1989)

    Article  Google Scholar 

  15. Filippov, A.E., Popov, V.L.: Modified Burridge-Knopoff model with state dependent friction. Tribol. Int. 43, 1392–1399 (2010)

    Article  Google Scholar 

  16. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  17. Knopoff, L., Ni, X.X.: Numerical instability at the edge of a dynamic fracture. Geophys. J. Int. 147, 1 (2001)

    Article  Google Scholar 

  18. Landau, L., Lifshitz, E.: Theory of Elasticity. Pergamon, New York (1986)

    Google Scholar 

  19. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)

    Article  CAS  Google Scholar 

  20. Myers, C.R., Langer, J.S.: Rupture propagation, dynamical front selection, and the role of small length scales in a model of an earthquake fault. Phys. Rev. E 47, 3048–3056 (1993)

    Article  Google Scholar 

  21. Nakano, K., Maegawa, S.: Stick-slip in sliding systems with tangential contact compliance. Tribol. Int. 42, 1771–1780 (2009)

    Article  Google Scholar 

  22. Nielsen, S., Taddeucci, J., Vinciguerra, S.: Experimental observation of stick-slip instability fronts. Geophys. J. Int. 180, 697–702 (2010)

    Article  Google Scholar 

  23. Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68(8), 1244 (1992)

    Article  Google Scholar 

  24. Persson, B.N.J.: Sliding Friction. Springer, Heidelberg (2000)

    Google Scholar 

  25. Prevost, A., Scheibert, J., Debrégeas, G.: Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces. Commun. Integr. Biol. 2(5), 422–424 (2009)

    Article  Google Scholar 

  26. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  CAS  Google Scholar 

  27. Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  CAS  Google Scholar 

  28. Rubinstein, S.M., Cohen, G., Fineberg, J.: Visualizing stick-slip: experimental observations of processes governing the nucleation of frictional sliding. J. Phys. D 42, 214016 (2009)

    Article  Google Scholar 

  29. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. Europhys. Lett. (EPL) 96, 54001 (2010)

    Article  Google Scholar 

  30. Scheibert, J., Leurent, S., Prevost, A., Debrégeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503 (2009)

    Article  CAS  Google Scholar 

  31. Scheibert, J., Prevost, A., Debrégeas, G., Katzav, E., Adda-Bedia, M.: Stress field at a sliding frictional contact: Experiments and calculations. J. Mech. Phys. Solids 57, 1921–1933 (2009)

    Article  CAS  Google Scholar 

  32. Scheibert, J., Prevost, A., Frelat, J., Rey, P., Debrégeas, G.: Experimental evidence of non-Amontons behaviour at a multicontact interface. Europhys. Lett. (EPL) 83, 34003 (2008)

    Article  Google Scholar 

  33. Scholz, C.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  34. Shaw, B.: Complexity in a spatially uniform continuum fault model. Geophys. Res. Lett. 21, 1983–1986 (1994)

    Article  Google Scholar 

  35. Trømborg, J., Scheibert, J., Amundsen, D.S., Thøgersen, K., Malthe-Sørenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

    Article  Google Scholar 

  36. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  CAS  Google Scholar 

  37. Wandersman, E., Candelier, R., Debrégeas, G., Prevost, A.: Texture-induced modulations of friction force: the fingerprint effect. Phys. Rev. Lett. 107(16), 164301 (2011)

    Article  CAS  Google Scholar 

  38. Xia, K.W., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. L. Vinningland for discussions. We acknowledge funding from the European Union (Marie Curie Grant No. PIEF-GA-2009-237089). This article was supported by a Center of Excellence grant to PGP from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Scheibert.

Appendices

Appendices

1.1 Appendix A: Relative Viscous Damping in a Linear Chain of Blocks

If friction forces are ignored, the equation of motion for an infinite chain of blocks connected by springs is given by

$$ m\ddot{u}_n = k(u_{n + 1} - 2u_n + u_{n-1}) + \eta(\dot{u}_{n+1} - 2\dot{u}_n + \dot{u}_{n-1}). $$
(22)

We then assume a solution of the form

$$ u_n(t) = {\rm{e}}^{\zeta_\kappa t} {\rm{e}}^{i\kappa n a}, $$
(23)

where \({\zeta_\kappa \in \mathbb{C}}\) and \({\kappa \in \mathbb{R}.}\) Inserting Eq. 23 into Eq. 22 yields the relation

$$ m \zeta_\kappa^2 = k \left( {\rm{e}}^{i\kappa a} - 2 + {\rm{e}}^{-i\kappa a} \right) + \eta \zeta_\kappa \left( {\rm{e}}^{i\kappa a} - 2 + {\rm{e}}^{-i\kappa a} \right), $$
(24)

which can be simplified to

$$ m \zeta_\kappa^2 + 4 \eta \sin^2 \left( \frac{\kappa a}{2} \right) \zeta_\kappa + 4k \sin^2 \left( \frac{\kappa a}{2} \right) = 0, $$
(25)

since

$$ e^{i\kappa a} - 2 + e^{-i\kappa a} = -4\sin^2 \left( \frac{\kappa a}{2} \right). $$
(26)

The complex parameter \(\zeta_\kappa\) is then given by

$$ \zeta_\kappa = \frac{-4 \eta \sin^2 \left( \frac{\kappa a}{2} \right) \pm \sqrt{16 \eta^2\sin^4 \left( \frac{\kappa a}{2} \right) -16 km \sin^2 \left( \frac{\kappa a}{2} \right)}}{2m} $$
(27)

The system is critically damped when Eq. 25 only has one solution for \(\zeta_\kappa,\) which occurs when the square root is zero:

$$ \eta^2 \sin^2 \left( \frac{\kappa a}{2} \right) = km \quad \Rightarrow \quad \eta = \frac{\sqrt{km}}{\left| \sin \left( \frac{\kappa a}{2} \right) \right|}. $$
(28)

The oscillations that are to be reduced have a wavelength λ = 2a, i.e. a wave number κ = 2π/λ = π/a. Inserting this into Eq. 28 leads to

$$ \eta_{\rm{c}} = \sqrt{k m}, $$
(29)

which is the value of the damping coefficient η for which waves of wavelength λ = 2a are critically damped. Since the absolute value of \(\sin\) is always smaller than one, choosing \(\eta = \sqrt{km}\) will cause all other waves to be under-damped.

1.2 Appendix B: Tangential Force Profiles and Characteristic Length with a Tangential Stiffness of the Interface

An analytical expression for the characteristic length l 0 can be found. In order to do so, the following assumptions are made: N ≫ 1, l 0/L ≪ 1 and slow loading compared with the internal dynamics of the system, which enables a static analysis. The system is first placed in a static state with an initial tangential force profile given by τ 0 n , and then loaded slowly from the left. The equilibrium of all non-edge blocks writes

$$ k\left( u_{n+1} - 2u_n + u_{n-1} \right) - k_{\rm{t}} \left( u_n - u_n^{\rm stick} \right) = 0. $$
(30)

We introduce a new variable u n ′ defined by

$$ u_n = u_n' + u_n^0, $$
(31)

where u 0 n is the initial position of block n. Inserting Eq. 31 into Eq. 30 yields

$$ k\left( u_{n+1}' - 2u_n' + u_{n-1}' \right) - k_{\rm{t}} u_n' + \tau_n^0 - k_{\rm{t}} \left( u_n^0 - u_n^{\rm stick} \right) = 0, $$
(32)

where

$$ \tau_n^0 = k\left( u_{n+1}^0 - 2u_n^0 + u_{n-1}^0 \right). $$
(33)

The two terms τ 0 n and \(-k_{\rm{t}} \left( u_n^0 - u_n^{\rm stick} \right)\) cancel in Eq. 32 since the initial state is static, and thus

$$ k\left( u_{n+1}' - 2u_n' + u_{n-1}' \right) - k_{\rm{t}} u_n' = 0. $$
(34)

The above equation can be rewritten to

$$ k a^2 \frac{u_{n+1}' - 2u_n' + u_{n-1}'}{a^2} - k_{\rm{t}} u_n' = 0, $$
(35)

where a = L/(N − 1) is the lattice spacing. Since N ≫ 1, the first term in Eq. 35 can be replaced by the second spatial derivative, and replacing u n ′ with u′(na) = u′(x) yields

$$ k a^2 \frac{\partial^2 u'(x)}{\partial x^2} - k_{\rm{t}} u'(x) = 0, $$
(36)

which has the general solution

$$ u'(x) = A {\rm{e}}^{x/l_0} + B{\rm{e}}^{-x/l_0}, \quad l_0 = \sqrt{\frac{k}{k_{\rm{t}}}}a. $$
(37)

The tangential force is given by

$$ \tau_n = k \left( u_{n+1} - 2u_n + u_{n-1} \right) $$
(38)
$$ = k \left( u_{n+1}' - 2u_n' + u_{n-1}' \right) + \tau_n^0. $$
(39)

By replacing again finite differences with second-order derivatives,

$$ \tau(x) = ka^2 \frac{\partial^2 u'(x)}{\partial x^2} + \tau^0(x), $$
(40)

the general expression for the shear force profile can be found by using Eq. 37, which yields

$$ \tau(x) = \frac{ka^2 l_0^2}{L^2} \left( A{\rm{e}}^{x/l_0} + B{\rm{e}}^{-x/l_0} \right) + \tau^0(x). $$
(41)

The system is loaded from the left, and at the beginning of an event the tangential force on block 1 is equal to the static friction threshold μs p 1. Provided l 0/L ≪ 1, the trailing edge will not be affected by the loading. The latter of these two boundary conditions yields

$$ \tau(L) = \frac{ka^2 l_0^2}{L^2} \left( A {\rm{e}}^{L/l_0} + B{\rm{e}}^{-L/l_0} \right) + \tau^0(L) $$
(42)
$$ \approx \frac{ka^2 l_0^2}{L^2} \left( A{\rm{e}}^{L/l_0} \right) + \tau^0(L) $$
(43)
$$ = \tau^0 (L), $$
(44)

i.e. A = 0. The first boundary condition yields

$$ \tau(0) = \frac{ka^2 l_0^2}{L^2} B + \tau^0(L) = \mu_{\rm{s}} p_1, $$
(45)

and the tangential force is therefore given by

$$ \tau(x) = \left( \mu_{\rm{s}} p_1 - \tau^0 (x) \right){\rm{e}}^{-x/l_0} + \tau^0(x). $$
(46)

The characteristic length l 0 is given by Eq. 37, and inserting for k given by Eq. 4 and a yields

$$ l_0 = \sqrt{\frac{k}{k_{\rm{t}}}}a = \sqrt{\frac{E L S}{(N - 1) k_{\rm{t}}}}, $$
(47)

and hence Eq. 12 for N >> 1.

Note that in a 3D situation, the exponential decay of the tangential stress with x would be replaced by a power law [9, 18].

1.3 Appendix C: Derivation of the Prediction of Precursor Lengths in Our Improved Model

We start with Eq. 16 and use the assumed tangential force profile in Eq. 21, shown in Fig. 14. Again, we go to the limit \(N \to \infty,\) resulting in the substitution

$$ \sum_{n=1}^N \tau_n \to \frac{N}{L} \int\limits_0^L \tau(x) {\hbox {d}} x , \qquad n \to xN/L. $$
(48)

The tangential force after a precursor of length L p is then given by

$$ F_{\rm{T}} = \frac{N}{L} \left[ \int\limits_0^{L_{\rm{p}}} \tau(x) {\hbox {d}} x + \int\limits_{L_{\rm{p}}}^{L} \tau(x) {\hbox {d}} x \right] $$
(49)
$$ = \frac{N}{L} \left[ \int\limits_0^{L_{\rm{p}}} \mu_{\rm{k}} p(x) {\hbox {d}} x + \int\limits_{L_{\rm{p}}}^{L} \left(\alpha p(L_{\rm{p}}) - \tau^0 (x) \right) {\rm{e}}^{-\frac{x - L_{\rm{p}}}{l_0}} + \tau^0(x) {\hbox {d}} x \right]. $$
(50)

We limit ourselves to predicting the precursors in Fig. 13b, i.e. using a tangential interfacial stiffness and linear initial tangential forces as depicted in Fig. 13a, but with θ = 0. The normal and initial tangential force are then given by

$$ p(x) = p = F_{\rm{N}}/N ={ \hbox {constant}}, $$
(51)
$$ \tau^0 (x) = \beta p \frac{2(x - L/2)}{L}, $$
(52)

where the parameter β determines the slope in the initial tangential force profile. Inserting Eqs. 51 and 52 into Eq. 50 yields

$$ F_{\rm{T}} = \frac{N}{L} \left[ \int\limits_0^{L_{\rm{p}}} \mu_{\rm{k}} p {\hbox {d}} x + \right. \left. \int\limits_{L_{\rm{p}}}^{L} \left(\alpha p - \beta p \frac{2(x - L/2)}{L} \right) {\rm{e}}^{-\frac{x - L_{\rm{p}}}{l_0}} + \beta p \frac{2(x - L/2)}{L} {\hbox {d}} x \right]. $$
(53)

The above integrals can be calculated easily, and the result is the tangential load F T as a function of the precursor length L p:

$$ F_{\rm{T}}(L_{\rm{p}}) = F_{\rm{N}} \left[ \mu_{\rm{k}} \frac{L_{\rm{p}}}{L} + 2\beta \frac{l_0^2}{L^2} \left({\rm{e}}^{-\frac{L-L_{\rm{p}}}{l_0}} - 1 \right) + \beta \frac{\left(L-L_{\rm{p}}\right) L_{\rm{p}}}{L^2} + \right.\\ \left. \frac{l_0}{L} \left( \beta \left(1+{\rm{e}}^{-\frac{L-L_{\rm{p}}}{l_0}} - 2\frac{L_{\rm{p}}}{L} \right) + \alpha \left(1 - {\rm{e}}^{-\frac{L-L_{\rm{p}}}{l_0}}\right) \right) \right]. $$
(54)

We observe that again F T(L) =  μk F N.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amundsen, D.S., Scheibert, J., Thøgersen, K. et al. 1D Model of Precursors to Frictional Stick-Slip Motion Allowing for Robust Comparison with Experiments. Tribol Lett 45, 357–369 (2012). https://doi.org/10.1007/s11249-011-9894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9894-3

Keywords

Navigation