Skip to main content

Advertisement

Log in

Pressure–Viscosity Coefficients for Polyalkylene Glycol Oils and Other Ester or Ionic Lubricants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We present in this article new viscosity and density data for polypropylene glycol monomethyl ether, which completes a series of articles where we have published dynamic viscosity data of poly(propylene glycol) dimethyl ethers, dipentaerythritol esters, and pentaerythritol esters. New dynamic viscosity measurements up to 60 MPa at five temperatures in the range of 303.15–373.15 K, and density values at temperatures ranging from 298.15 to 398.15 K up to 60 MPa are reported in addition to other physical properties that affect the behavior of the fluids in elastohydrodynamic lubrication regime, such as the viscosity index value, VI, the universal pressure–viscosity coefficient, α film, and the temperature–viscosity coefficient, β. The experimental measurements were performed using a rotational automated viscometer Anton Paar Stabinger SVM3000, a rolling-ball viscometer Ruska 1602-830 for high pressures, and an automated Anton Paar DMA HPM vibrating-tube densimeter. Together with these data, we also present a comparison of the film-generating capability for the fluids above mentioned as well as for other five ionic liquids. We analyze the dependence of the molecular structure on the lubrication properties of these oils, which can help the lubricant engineers to develop products with enhanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ai :

Parameter of modified VFT equation (eq. 3)

Ai :

Coefficients of the Tait equation

α:

Local pressure–viscosity coefficient

αfilm :

Universal pressure–viscosity coefficient

αp :

Thermal expansivity

α* :

Asymptotic isoviscous pressure coefficient

bi :

Parameter of modified VFT equation (eq. 4)

Bi :

Coefficients of the Tait equation

β:

Temperature–viscosity coefficient

ci :

Parameter of modified VFT equation (eq. 5)

C:

Coefficient of the Tait equation

D:

Parameter of modified VFT equation (eq. 2)

DA :

Angell strength parameter.

E:

Parameter of modified VFT equation (eq. 2)

F:

Parameter of modified VFT equation (eq. 2)

Gi :

Parameters of modified VFT equation (eq. 2)

H:

Parameter of modified VFT equation (eq. 2)

hcent :

Film thickness

η:

Dynamic viscosity

η0 :

Dynamic viscosity at atmospheric pressure

k:

Parameter of film thickness equation (eq. 8)

κT :

Isothermal compressibility

p:

Pressure

piv(p):

Isoviscous pressure

piv(∞):

Asymptotic isoviscous pressure

pref :

Reference pressure

ρ:

Density

T:

Temperature

T0 :

Vogel temperature

U:

Rolling speed

Vm :

Molar volume

References

  1. Pirro, D.M., Wessol, A.A.: Lubrication Fundamentals, 2nd edn. Marcel Dekker, Inc., New York (2001)

    Book  Google Scholar 

  2. Mang, T., Dresel, W.: Lubricants and Lubrication. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  3. Mortier, R.M., Fox, M.F., Orszulik, S.T. (eds.): Chemistry and Technology of Lubricants, 3rd edn. Springer, New York (2010)

    Google Scholar 

  4. Lawford, S.: Polyalkylene glycols. In: Rudnick, L.R. (ed.) Synthetic, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC/Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  5. Paredes, X., Pensado, A.S., Comuñas, M.J.P., Fernández, J.: How pressure affects the dynamic viscosities of two poly(propylene glycol) dimethyl ether lubricants. J. Chem. Eng. Data 55, 4088–4094 (2010)

    Article  CAS  Google Scholar 

  6. Somers, A., Howlett, P., Sun, J., MacFarlane, D., Forsyth, M.: Transition in wear performance for ionic liquid lubricants under increasing load. Trib. Lett 40, 279–284 (2010)

    Article  CAS  Google Scholar 

  7. Booser, E.R.: CRC handbook of Lubrication. Theory and Practice of Tribology: Volume II: Theory and Design. CRC Press Inc., Boca Raton (1984)

    Google Scholar 

  8. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)

    Article  CAS  Google Scholar 

  9. Larsson, R., Kassfeldt, E., Byheden, Å., Norrby, T.: Base fluid parameters for elastohydrodynamic lubrication and friction calculations and their influence on lubrication capability. J. Synth. Lubr. 18, 183–198 (2001)

    Article  CAS  Google Scholar 

  10. Errichello, R.: Selecting oils with high pressure–viscosity coefficients increase bearing life by more than four times. Mach. Lubr. 200403 (2004). http://www.machinerylubrication.com/article_detail.asp?articleid=586

  11. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication: The Elastohydrodynamics of Elliptical Contacts. Wiley, New York (1981)

    Google Scholar 

  12. Biresaw, G., Bantchev, G.: Effect of chemical structure on film-forming properties of seed oils. J. Synth. Lubr. 25, 159–183 (2008)

    Article  CAS  Google Scholar 

  13. Chang, H.S., Spikes, H.A., Bunemann, T.F.: The shear stress properties of ester lubricants in elastohydrodynamic contacts. J. Synth. Lubr. 9, 91–114 (1992)

    Article  CAS  Google Scholar 

  14. Aderin, M.E., Johnston, G.J., Spikes, H.A., Balson, T.G., Emery, M.G.: The film-forming properties of polyalkylene glycols. J. Synth. Lubr. 10, 23–45 (1993)

    Article  CAS  Google Scholar 

  15. Gunsel, S., Korcek, S., Smeeth, M., Spikes, H.A.: The elastohydrodynamic friction and film forming properties of lubricant base oils. Tribol. Trans. 42, 559–569 (1999)

    Article  CAS  Google Scholar 

  16. Ohno, N., Shiratake, A., Kuwano, N., Hirano, F.: Behavior of some vegetable oils in EHL contacts. Tribol. Ser. 32, 243–251 (1997)

    Article  CAS  Google Scholar 

  17. Bair, S., Fernandez, J., Khonsari, M.M., Krupka, I., Qureshi, F., Vergne, P., Wang, Q.J.: An argument for a change in elastohydrodynamic lubrication philosophy. Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol. 223, I–II (2009)

    Article  Google Scholar 

  18. Kumar, P., Bair, S., Krupka, I., Hartl, M.: Newtonian quantitative elastohydrodynamic film thickness with linear piezoviscosity. Trib. Int. 43, 2159–2165 (2010)

    Article  CAS  Google Scholar 

  19. Paredes, X., Pensado, A.S., Comuñas, M.J.P., Fernández, J.: Experimental dynamic viscosities of dipentaerythritol ester lubricants at high pressure. J. Chem. Eng. Data 55, 3216–3223 (2010)

    Article  CAS  Google Scholar 

  20. Pensado, A.S., Comuñas, M.J.P., Lugo, L., Fernández, J.: High pressure characterization of dynamic viscosity and derived properties for squalane and two pentaerythritol ester lubricants: pentaerythritol tetra-2-ethylhexanoate and pentaerythritol tetranonanoate. Ind. Eng. Chem. Res. 45, 2394–2404 (2006)

    Article  CAS  Google Scholar 

  21. Pensado, A.S., Comuñas, M.J.P., Fernández, J.: Relationship between viscosity coefficients and volumetric properties: measurements and modeling for pentaerythritol esters. Ind. Eng. Chem. Res. 45, 9171–9183 (2006)

    Article  CAS  Google Scholar 

  22. Dowson, D., Higginson, G.R.: Elastohydrodynamic Lubrication. Pergamon Press, ed., Oxford (1966)

    Google Scholar 

  23. Randles, S.J.: Refrigeration lubricants. In: Rudnick, L.R. (ed.) Synthetic, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC/Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  24. ISO/TR 3666, Viscosity of Water. (1998)

  25. Lansdown, A.R.: Lubrication and Lubricant Selection. Professional Engineering Publishing, London (2004)

    Google Scholar 

  26. Pensado, A.S., Comuñas, M.J.P., Fernández, J.: The pressure–viscosity coefficient of several ionic liquids. Trib. Lett. 31, 107–118 (2008)

    Article  CAS  Google Scholar 

  27. Bair, S., Liu, Y.C., Wang, Q.J.: The pressure-viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response. J. Tribol. 128, 624–631 (2006)

    Article  Google Scholar 

  28. Arora, H., Cann, P.M.: Lubricant film formation properties of alkyl imidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. Trib. Int. 43, 1908–1916 (2010)

    Article  CAS  Google Scholar 

  29. Xie, G., Luo, J., Guo, D., Liu, S.: Nanoconfined ionic liquids under electric fields. Appl. Phys. Lett. 96, 043112 (2010)

    Article  Google Scholar 

  30. Qu, J., Blau, P., Dai, S., Luo, H., Meyer, H.: Ionic liquids as novel lubricants and additives for diesel engine applications. Trib. Lett. 35, 181–189 (2009)

    Article  CAS  Google Scholar 

  31. Aparicio, S., Alcalde, R., García, B., Leal, J.M.: High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids. J. Phys. Chem. B. 113, 5593–5606 (2009)

    Article  CAS  Google Scholar 

  32. Ahosseini, A., Scurto, A.: Viscosity of imidazolium-based ionic liquids at elevated pressures: cation and anion effects. Int. J. Thermophys. 29, 1222–1243 (2008)

    Article  CAS  Google Scholar 

  33. Fandiño, O., Lugo, L., Comunas, M.J.P., Lopez, E.R., Fernandez, J.: Temperature and pressure dependences of volumetric properties of two poly(propylene glycol) dimethyl ether lubricants. J. Chem. Thermodyn. 42, 84–89 (2010)

    Article  Google Scholar 

  34. Segovia, J.J., Fandiño, O., López, E.R., Lugo, L., Carmen Martín, M., Fernández, J.: Automated densimetric system: measurements and uncertainties for compressed fluids. J. Chem. Thermodyn. 41, 632–638 (2009)

    Article  CAS  Google Scholar 

  35. Paredes, X., Fandiño, O., Pensado, A.S., Comuñas, M.J.P., Fernandez, J.: Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure. J Chem Thermodyn. (2011). doi:10.1016/j.jct.2011.07.005

  36. Paredes, X., Fandiño, O., Comuñas, M.J.P., Pensado, A.S., Fernández, J.: Study of the effects of pressure on the viscosity and density of diisodecyl phthalate. J. Chem. Thermodyn. 41, 1007–1015 (2009)

    Article  CAS  Google Scholar 

  37. Dymond, J.H., Malhotra, R.: The Tait equation: 100 years on. Int. J. Thermophys. 9, 941–951 (1988)

    Article  Google Scholar 

  38. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  Google Scholar 

  39. Dee, G.T., Ougizawa, T., Walsh, D.J.: The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight. Polymer. 33, 3462–3469 (1992)

    Article  CAS  Google Scholar 

  40. Höglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999)

    Article  Google Scholar 

  41. Godfrey, D., Herguth, W.R.: Back to Basics: Physical and Chemical Properties of Industrial Mineral Oils Affecting Lubrication, Parts 1–5, Society of Tribologists and Lubrication Engineers (1996)

  42. Larsson, R., Larsson, P.O., Eriksson, E., Sjöberg, M., Höglund, E.: Lubricant properties for input to hydrodynamic and elastohydrodynamic lubrication analyses. Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol. 214, 17–27 (2000)

    Article  Google Scholar 

  43. Regueira, T., Lugo, L., Fandino, O., Lopez, E.R., Fernandez, J.: Compressibilities and viscosities of reference and vegetable oils for their use as hydraulic fluids and lubricants. Green Chem. 13, 1293–1302 (2011)

    Article  CAS  Google Scholar 

  44. Comuñas, M.J.P., Baylaucq, A., Boned, C., Fernández, J.: High-pressure measurements of the viscosity and density of two polyethers and two dialkyl carbonates at high pressures. Int. J. Thermophys. 22, 749–768 (2001)

    Article  Google Scholar 

  45. Paluch, M., Hensel-Bielowka, S., Ziolo, J.: Effect of pressure on fragility and glass transition temperature in fragile glass-former. J. Chem. Phys. 110, 10978–10981 (1999)

    Article  CAS  Google Scholar 

  46. Capaccioli, S., Lucchesi, M., Casalini, R., Presto, S., Rolla, P.A., Viciosa, M.T., Corezzi, S., Fioretto, D.: Pressure and temperature dependences of the dynamics of glass formers studied by broad-band dielectric spectroscopy. Philos. Mag. B. 82, 651–662 (2002)

    Article  CAS  Google Scholar 

  47. Patkowski, A., Paluch, M., Gapinski, J.: Relationship between T0, Tg and their pressure dependence for supercooled liquids. J. Non-Cryst. Solids 330, 259–263 (2003)

    Article  CAS  Google Scholar 

  48. Patkowski, A., Gapiński, J., Meier, G.: Dynamics of supercooled van der Waals liquid under pressure. A dynamic light scattering study. Colloid Polym. Sci. 282, 874–881 (2004)

    Article  CAS  Google Scholar 

  49. Dlubek, G., Kilburn, D., Alam, M.A.: Temperature and pressure dependence of α-relaxation and free volume in poly(vinyl acetate). Macromol. Chem. Phys. 206, 818–826 (2005)

    Article  CAS  Google Scholar 

  50. Kriegs, H., Gapinski, J., Meier, G., Paluch, M., Pawlus, S., Patkowski, A.: Pressure effects on the α and α’ relaxations in polymethylphenylsiloxane. J. Chem. Phys. 124, 104901–104909 (2006)

    Article  CAS  Google Scholar 

  51. Paluch, M., Patkowski, A., Fischer, E.W.: Temperature and pressure scaling of the alpha relaxation process in fragile glass formers: a dynamic light scattering study. Phys. Rev. Lett. 85, 2140 (2000)

    Article  CAS  Google Scholar 

  52. Casalini, R., Capaccioli, S., Lucchesi, M., Rolla, P.A., Corezzi, S.: Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model. Phys. Rev. E. 63, 031207 (2001)

    Article  CAS  Google Scholar 

  53. Drozd-Rzoska, A., Rzoska, S.J., Roland, C.M., Imre, A.R.: On the pressure evolution of dynamic properties of supercooled liquids. J Phys. Condens. Matter 20, 244103/244101-244103/244111 (2008)

  54. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate:  viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  55. Harris, K.R., Woolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    Article  CAS  Google Scholar 

  56. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the Viscosity of the Ionic Liquids 1-Methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium Tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)

    Article  CAS  Google Scholar 

  57. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-Hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007)

    Article  CAS  Google Scholar 

  58. Spikes, H.A.: A thermodynamic approach to viscosity. Tribol. Trans. 33, 140–148 (1990)

    Article  CAS  Google Scholar 

  59. Traver, F., Perry, R., Murthy, K., Quinn, C.: Silicones. In: Rudnick, L.R. (ed.) Synthetic, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC/Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  60. Cardoso, N.F.R., Martins, R.C., Seabra, J.H.O., Igartua, A., Rodríguez, J.C., Luther, R.: Micropitting performance of nitrided steel gears lubricated with mineral and ester oils. Trib. Int. 42, 77–87 (2009)

    Article  CAS  Google Scholar 

  61. Liu, Y., Wang, Q.J., Wang, W., Hu, Y., Zhu, D., Krupka, I., Hartl, M.: EHL simulation using the free-volume viscosity model. Trib. Lett. 23, 27–37 (2006)

    Article  CAS  Google Scholar 

  62. Kudish, I.I., Kumar, P., Khonsari, M.M., Bair, S.: Scale effects in generalized Newtonian elastohydrodynamic films. J. Tribol. 130, 041504 (2008)

    Article  Google Scholar 

  63. Gold, P.W., Schmidt, A., Dicke, H., Loos, J., Assmann, C.: Viscosity–pressure–temperature behaviour of mineral and synthetic oils. J. Synth. Lubr. 18, 51–79 (2001)

    Article  CAS  Google Scholar 

  64. Blok, H.: Inverse problems in hydrodynamic lubrication and design directives for lubricated flexible surfaces. In: Muster, D., Sternlicht, B. (eds.) Proceedings of International Symposium on Lubrication and Wear. Berkeley, Calif., McCutchan Pub. Corp, Houston (1963)

    Google Scholar 

  65. Aderin, M., Johnston, G.J., Spikes, H.A., Caporiccio, G.: The elastohydrodynamic properties of some advanced non hydrocarbon-based lubricants. Lubr. Eng. 48, 633–638 (1992)

    CAS  Google Scholar 

  66. Placek, D.G.: Hydraulics. In: Rudnick, L.R. (ed.) Synthetic, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC/Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  67. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 252, 96–102 (2007)

    Article  CAS  Google Scholar 

  68. Pereiro, A.B., Santamarta, F., Tojo, E., Rodríguez, A., Tojo, J.: Temperature dependence of physical properties of ionic liquid 1, 3-dimethylimidazolium methyl sulfate. J. Chem. Eng. Data 51, 952–954 (2006)

    Article  CAS  Google Scholar 

  69. Tariq, M., Carvalho, P.J., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C., Rebelo, L.P.N.: Viscosity of (C2–C14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids in an extended temperature range. Fluid Phase Equilib. 301, 22–32 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Science and Technology Ministry (CTQ2005-09176-C02-01 and CTQ2008-06498-C02-01) and Xunta de Galicia (PGIDIT05TAM20601PR). Equipment funding from the S.X.I.D. Xunta de Galicia is also gratefully acknowledged. The participation of A.S.P. was made possible by an Ánxeles Alvariño fellowship from DXID, Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, X., Fandiño, O., Pensado, A.S. et al. Pressure–Viscosity Coefficients for Polyalkylene Glycol Oils and Other Ester or Ionic Lubricants. Tribol Lett 45, 89–100 (2012). https://doi.org/10.1007/s11249-011-9861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9861-z

Keywords

Navigation