Skip to main content

Advertisement

Log in

On the Pressure Dependence of Shear Strengths in Sliding, Boundary-Layer Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Density functional theory, as implemented in a full-potential linearized augmented plane wave method, flair, is used to calculated the pressure-dependent shear strength S of KCl on a Fe(100) substrate and the results are compared to the experimental dependence given by \( S = S_{0} + \alpha P \), where P is the contact pressure and S 0 = 65 ± 5 MPa and α = 0.14 ± 0.02. Calculations were performed for a KCl bilayer enclosed between two Fe(100) slabs, where the energy was found to vary harmonically as a function of the separation between the outermost layers. Thus, a simple analytical model was developed for the pressure-dependent shear strength of the film, which includes both linear and quadratic pressure dependence. However, the coefficient of the quadratic term was found to be much smaller than the linear term, leading to the linear shear-strength pressure dependence found experimentally. The calculated values of S 0 〈10〉 = 64 ± 9 and S 0 〈11〉 = 69 ± 8 MPa are in excellent agreement with experiment, while α 〈10〉 and α 〈11〉 equal 0.05 ± 0.01, somewhat lower than, but within the same range as the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bridgeman, P.W.: Shearing phenomena at high pressures, particularly in inorganic compounds. Proc. Am. Acad. Arts Sci. 71, 387–460 (1986)

    Article  Google Scholar 

  2. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett layers. Proc. Roy. Soc. A 380, 389–407 (1982)

    Article  CAS  Google Scholar 

  3. Sutcliffe, M.J., Taylor, S.R., Cameron, A.: Molecular asperity theory of boundary friction. Wear 51, 181–192 (1978)

    Article  CAS  Google Scholar 

  4. Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990)

    Article  CAS  Google Scholar 

  5. Schwarz, U.D., Allers, W., Gensterblum, G., Wiesendanger, R.: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B. 52, 14976–14984 (1995)

    Article  CAS  Google Scholar 

  6. Briscoe, B.J., Smith, A.C.: The influence of dynamic loading on sliding friction. Nature 278, 725–726 (1979)

    Article  Google Scholar 

  7. Georges, J.-M., Mazuyer, D.: Pressure effects on the shearing of a colloidal thin film. J. Phys. Condens. Matter. 3, 9545–9550 (1991)

    Article  CAS  Google Scholar 

  8. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brume, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  9. Furlong, O., Manzi, S., Pereyra, V., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80, 153408 (2009)

    Article  Google Scholar 

  10. Harrison, J.A., Gao, G., Schall, J.D., Knippenberg, M.T., Mikulski, P.T.: Friction between solids. Phil. Trans. Ser. A. 366, 1469–1495 (2008)

    Article  CAS  Google Scholar 

  11. Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)

    Article  CAS  Google Scholar 

  12. Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)

    Article  CAS  Google Scholar 

  13. Mikulski, P.T., Harrison, J.A.: Packing-density effects on the friction of n-alkane monolayers. J. Am. Chem. Soc. 123, 6873–6881 (2001)

    Article  CAS  Google Scholar 

  14. He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed surface layers. Tribol. Lett. 10, 7–14 (2001)

    Article  CAS  Google Scholar 

  15. Persson, B.N.J.: Sliding friction: physical principles and applications, 2nd edn. Springer, Heidelberg (2000)

    Google Scholar 

  16. Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B. 108, 3410–3425 (2004)

    Article  CAS  Google Scholar 

  17. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  18. Mo, Y., Szlufarska, I.: Roughness picture of friction in dry nanoscale contacts. Phys. Rev. B 81, 035405 (2010)

    Article  Google Scholar 

  19. Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., Yip, S.: Ideal shear strain of metals and ceramics. Phys. Rev. B 70, 104104 (2004)

    Article  Google Scholar 

  20. Jhi, S.H., Louie, S.G., Cohen, M.L., Morris Jr., J.W.: Mechanical instability and ideal shear strength of transition metal carbides and nitrides. Phys. Rev. Lett. 87, 075503 (2001)

    Article  CAS  Google Scholar 

  21. Shenoy, V.B., Miller, R., Tadmor, E.B., Phillips, R., Ortiz, M.: Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80, 742–745 (1998)

    Article  CAS  Google Scholar 

  22. Baroni, S., Giannozzi, P., Testa, A.: Elastic constants of crystals from linear-response theory. Phys. Rev. Lett. 59, 2662–2665 (1987)

    Article  Google Scholar 

  23. Garvey, M., Furlong, O.J., Weinert, M., Tysoe, W.T.: Shear properties of potassium chloride films on iron using density functional theory. J. Phys. Condens. Matter. 23, 265003 (2011)

    Article  Google Scholar 

  24. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)

    Article  Google Scholar 

  25. Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B 77, 035430 (2008)

    Article  Google Scholar 

  26. Garvey, M., Weinert, M., Tysoe, W.T.: On the film thickness dependence of shear strengths in sliding, boundary-layer friction, Wear (submitted)

  27. Wu, G., Gao, F., Kaltchev, M., Gutow, J., Mowlem, J., Schramm, W.C., Kotvis, P.V., Tysoe, W.T.: An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252, 595–606 (2002)

    Article  CAS  Google Scholar 

  28. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B. 24, 864–875 (1981)

    Article  CAS  Google Scholar 

  29. Weinert, M., Wimmer, E., Freeman, A.J.: Total-energy all-electron density functional method for bulk solids and surfaces. Phys. Rev. B. 26, 4571–4578 (1982)

    Article  CAS  Google Scholar 

  30. Weinert, M., Schneider, G., Podloucky, R., Redinger, J.: http://www.uwm.edu/~weinert/flair.html. Accessed 21 July 2011

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  32. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905–937 (1929)

    CAS  Google Scholar 

  33. Prandtl, L.: Ein Gedankenmodell zur kinetischen theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928)

    Article  Google Scholar 

  34. Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation under Grant No. CHE-0654276 and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvey, M., Weinert, M. & Tysoe, W.T. On the Pressure Dependence of Shear Strengths in Sliding, Boundary-Layer Friction. Tribol Lett 44, 67–73 (2011). https://doi.org/10.1007/s11249-011-9827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9827-1

Keywords

Navigation