Skip to main content
Log in

Wear Behavior of Nanostructured Al and Al–B4C Nanocomposites Produced by Mechanical Milling and Hot Extrusion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear properties of a nanostructured matrix of Al prepared via mechanical milling and hot extrusion were investigated before and after incorporation of B4C nanoparticles. The sample powders were milled for a period of 20 h to produce nanopowders. Mechanical milling was used to prepare nanocomposite samples by addition of 2 and 4 wt% of B4C nanoparticles into the Al matrix. A pin-on-disk setup was used to evaluate the wear properties of the hot extruded samples under dry condition. The results revealed a lower friction coefficient and a lower wear rate for the nanostructured matrix of Al in contrast to a commercial coarse grained Al matrix. The same pattern was also observed in the nanocomposite samples with respect to the base matrix. Hardness values were used to discuss the observed results. Scanning electron microscopy (SEM) was used to analyze the worn surface and wear debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kimura, Y.: Recent trends in tribology in Japan. J. Euro. Rib. 931, 1–9 (1993)

    Google Scholar 

  2. Raghumatham, N., Ioannidis, E.K., Sheppard, T.: Fabrication, properties and structure of a high temperature light alloy composite. J. Mater. Sci. 26, 985–992 (1991)

    Google Scholar 

  3. Shibata, K., Ushio, H.: Tribological application of MMCs for reducing engine weight. J. Tribol. Int. 27, 39–41 (1994)

    Article  CAS  Google Scholar 

  4. Chellman, D.J., Langenbeck, S.L.: Aerospace applications of advanced aluminum alloys. J. Key Eng. Mater. 77–78, 49–60 (1993)

    Google Scholar 

  5. Chawla, N., Chawla, K.K.: Metal matrix composites, pp. 1–5. Springer-Verlag, New York (2006)

    Google Scholar 

  6. Rohatgi, P.K.: Cast metal matrix composites. In: Metal Hand Book, vol 15. 9th edn. ASM International, Metals Park (1988)

  7. Sannino, A.P., Rack, H.J.: Tribological investigation of 2009Al-20 vol.% SiCp/17-4 PH, Part I: composite performance. Wear 197, 151 (1996)

    Article  CAS  Google Scholar 

  8. Sharma, S.C.: The sliding wear behavior of Al6061–garnet particulate composites. Wear 249, 1036 (2001)

    Article  CAS  Google Scholar 

  9. Jiang, J.Q., Tan, R.S., Ma, A.B.: Dry sliding wear behaviour of Al2O3–Al composites produced by centrifugal force infiltration. Mater. Sci. Technol. 12, 483–488 (1996)

    CAS  Google Scholar 

  10. How, H.C., Baker, T.N.: Characterisation of sliding friction-induced subsurface deformation of Saffil-reinforced AA6061 composites. Wear 232, 106 (1999)

    Article  CAS  Google Scholar 

  11. Ipek, R.: Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC). J Mate Proc Tech 162–163, 71–75 (2005)

    Article  Google Scholar 

  12. Rosenberger, M.R., Schvezov, C.E., Forlerer, E.: Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259, 590–601 (2005)

    Article  CAS  Google Scholar 

  13. Hemanth, J.: Tribological behavior of cryogenically treated B4Cp/Al–12% Si composites. Wear 258, 1732–1744 (2005)

    Article  CAS  Google Scholar 

  14. Kaczmar, J.W., Pietrzak, K., Wlosinski, W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58–67 (2000)

    Article  Google Scholar 

  15. Mohanty, R.M., Balasubramanian, K., Seshadri, S.K.: Boron carbide-reinforced aluminum 1100 matrix composites: fabrication and properties. Mater. Sci. Eng. A 498, 42–52 (2008)

    Article  Google Scholar 

  16. Topcu, I., Gulsoy, H.O., Kadioglu, N., Gulluoglu, A.N.: Processing and mechanical properties of B4C reinforced Al matrix composites. J. Alloys Comp. 482, 516–521 (2009)

    Article  CAS  Google Scholar 

  17. Shorowordi, K.M., Haseeb, A., Celis, J.P.: Tribo-surface characteristics of Al–B4C and Al–SiC composites worn under different contact pressures. Wear 261, 634–641 (2006)

    Article  CAS  Google Scholar 

  18. Lee, K.B., Sim, H.S., Cho, S.Y., Kwon, H.: Tensile properties of 5052 Al matrix composites reinforced with B4C. Metall. Mater. Trans. A 32, 2142–2147 (2001)

    Article  Google Scholar 

  19. Lashgari, H.R., Zangeneh, Sh, Shahmir, H., Saghafi, M., Emamy, M.: Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10% B4C cast composites. Mater. Des. 31, 4414–4422 (2010)

    Article  CAS  Google Scholar 

  20. Vintila, R., Charest, A., Drew, R.A.L., Brochu, M.: Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater. Sci. Eng. A 528, 4395–4407 (2011)

    Article  Google Scholar 

  21. Ye, J.C., He, J.H., Schoenung, J.M.: Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: Part I. Effects of process conditions on structure. Metall. Mater. Trans. A 37A, 3099–3109 (2006)

    Article  CAS  Google Scholar 

  22. Li, Y., Zhao, Y.H., Ortalan, V., Liu, W., Zhang, Z.H., Vogt, R.G., Browning, N.D., Lavernia, E.J., Schoenung, J.M.: Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng. A 527, 305–316 (2009)

    Article  Google Scholar 

  23. De Castro, C.L., Mitchell, B.S.: Crystal growth kinetics of nanocrystalline aluminum prepared by mechanical attrition in nylon media. Mater. Sci. Eng. A 396, 124–128 (2005)

    Article  Google Scholar 

  24. Keblinski, P., Phillpot, S.R., Wolf, D., Gleiter, H.: Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation. Acta Mater. 45, 987–998 (1997)

    Article  CAS  Google Scholar 

  25. Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995)

    CAS  Google Scholar 

  26. Kong, X.L., Liu, Y.B., Qiao, L.J.: Dry sliding tribological behaviors of nanocrystalline Cu–Zn surface layer after annealing in air. Wear 256, 747 (2004)

    Article  CAS  Google Scholar 

  27. Du, L., Xu, B., Dong, S., Yang, H., Wu, Y.: Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings. J. Surf. Coat. Technol. 192, 311–316 (2005)

    Article  CAS  Google Scholar 

  28. Dao, M., Lu, L., Asaro, R.J., De, J.T.M., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. J. Acta Mater. 55, 4041–4065 (2007)

    Article  CAS  Google Scholar 

  29. Lv, X., Wang, R.S.G., Liu, Y., Long, K., Li, S., Zhang, Z.D.: Effect of nanocrystallization on tribological behaviors of ingot iron. Wear 264, 535–541 (2008)

    Article  CAS  Google Scholar 

  30. Thakur, S.K., Dhindaw, B.K.: The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 247, 191–201 (2001)

    Article  CAS  Google Scholar 

  31. Suryanarayana, C., Grant Norton, M.: X-ray Diffraction: A Practical Approach. Plenum Press, New York (1998)

    Google Scholar 

  32. Prabhu, B., Suryanarayana, C., Ana, L., Vaidyanathan, R.: Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. J. Mater. Sci. Eng. A 425, 192–200 (2006)

    Article  Google Scholar 

  33. Durai, T.G., Das, K., Das, S.: Al (Zn)–4Cu/Al2O3 in situ metal matrix composite synthesized by displacement reactions. J. Alloys Compd. 457, 435–439 (2008)

    Article  CAS  Google Scholar 

  34. Srinivasa, Rao, C., Upadhyaya, G.S.: 2014 and 6061 aluminium alloy-based powder metallurgy composites containing silicon carbide particles/fibres. Mater. Des. 63, 59–66 (1995)

    Google Scholar 

  35. Archard, J.F.: Contact and rubbing of flat surface. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  36. Clarke, J., Sarkar, A.D.: Wear characteristics of as-cast binary aluminium–silicon alloys. Wear 54, 7–16 (1979)

    Article  CAS  Google Scholar 

  37. Kumar, S., Chakraborty, M., Sarma, V.S., Murty, B.S.: Tensile and wear behavior of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134–142 (2008)

    Article  CAS  Google Scholar 

  38. Alpas, A.T., Embury, J.D.: Sliding and abrasive wear behaviour of aluminum (2024)–SiC particle reinforced composite. Scr. Metall. 24, 931–935 (1990)

    Article  CAS  Google Scholar 

  39. Suh, N.P.: The delamination theory of wear. Wear 25, 111–124 (1973)

    Article  CAS  Google Scholar 

  40. Ma, T., Yamaura, H., Koss, D.A., Voigt, R.C.: Dry sliding wear behavior of cast SiC-reinforced Al MMCs. Mater. Sci. Eng. A 360, 116–125 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taheri-Nassaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, A., Taheri-Nassaj, E. Wear Behavior of Nanostructured Al and Al–B4C Nanocomposites Produced by Mechanical Milling and Hot Extrusion. Tribol Lett 44, 59–66 (2011). https://doi.org/10.1007/s11249-011-9825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9825-3

Keywords

Navigation