Skip to main content
Log in

Molecular Dynamics Simulation of Lubricant Redistribution and Transfer at Near-Contact Head-Disk Interface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

When the spacing between the slider and lubricant in a hard disk drive decreases to less than 5 nm, the effect of the intermolecular force between these two surfaces can no longer be ignored. This effect on the lubricant distribution at the near-contact head disk interface is investigated via molecular dynamics method. In this study, the lubricant is confined between a smooth disk surface and a rough slider surface represented as a partially cosinusoidal wave. The simulation results reveal that the intermolecular force-induced meniscus formation at the near-contact head disk interface is strongly sensitive to the slider-to-disk separation, lubricant film thickness and the asperity shape (or roughness) of the slider. The attractive van der Waals forces between the slider and lubricant become weaker with increasing slider-to-disk separation and asperity mid-height, but decreasing lubricant film thickness and asperity mid-width. The Hamaker theory application to van der Waals interactions is also introduced to verify the molecular dynamics simulation. It is found that the critical separation, below which the lubricant will lose its stability to form a meniscus, increases approximately linearly with the lubricant film thickness, for slider surfaces with or without roughness both in the molecular dynamics simulation and Hamaker theory application to van der Waals interactions. Moreover, it is observed that the critical separation between a smooth disk and rough slider surface will slightly decrease when the asperity mid-height increases. The same phenomenon is observed when the asperity mid-width reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wood, R.: The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans. Magn. 36, 36–42 (2000)

    Article  Google Scholar 

  2. Mate, C.M.: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084–3090 (1992)

    Article  CAS  Google Scholar 

  3. Gui, J., Marchon, B.: A stiction model for a head-disk interface of a rigid disk drive. J. Appl. Phys. 78, 4206–4217 (1995)

    Article  CAS  Google Scholar 

  4. Chilamakuri, S.K., Bhushan, B.: A comprehensive kinetic meniscus model for prediction of long-term static friction. J. Appl. Phys. 86, 4649–4656 (1999)

    Article  CAS  Google Scholar 

  5. Chen, Y.F., Weng, J.G., Lukes, J.R., Majumdar, A., Tien, C.L.: Molecular dynamics simulation of the meniscus formation between two surfaces. Appl. Phys. Lett. 79, 1267–1269 (2001)

    Article  CAS  Google Scholar 

  6. Wu, L., Bogy, D.B.: Effect of the intermolecular forces on the flying attitude of sub-5 nm flying height air bearing sliders in hard disk drives. J. Tribol. 124, 562–567 (2002)

    Article  Google Scholar 

  7. Thornton, B.H., Bogy, D.B.: Head-disk interface dynamic instability due to intermolecular forces. IEEE Trans. Magn. 39, 2420–2422 (2003)

    Article  Google Scholar 

  8. Chen, D., Bogy, D.B.: Intermolecular force and surface roughness models for air bearing simulations for sub-5 nm flying height sliders. Microsyst. Technol. 13, 1211–1217 (2007)

    Article  CAS  Google Scholar 

  9. Lee, S.C., Polycarpou, A.A.: Tri-state dynamic model and adhesive effects on flying-height modulation for ultra-low flying head disk interfaces. Microsyst. Technol. 10, 649–661 (2004)

    Article  Google Scholar 

  10. Lee, S.C., Polycarpou, A.A.: Adhesion forces for sub-10 nm flying-height magnetic storage head disk interfaces. J. Tribol. 126, 334–341 (2004)

    Article  Google Scholar 

  11. Zhang, B., Nakajima, A.: Surface force in slider air bearings of hard disks. Tribol. Interface Eng. Ser. 39, 209–217 (2001)

    Google Scholar 

  12. Dagastine, R.R., White, L.R., Jones, P.M., Hsia, Y.T.: Effect of media overcoat on van der Waals interaction at the head-disk interface. J. Appl. Phys. 97, 126106 (2005)

    Article  Google Scholar 

  13. Zhang, M.S., Liu, B., Tjiptoharsono, F.: Approaches to reduce effect of short-range interactions in head disk interface. Microsyst. Technol. 15, 1591–1595 (2009)

    Article  Google Scholar 

  14. Li, J.H., Liu, B., Hua, W., Ma, Y.S.: Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141–2143 (2002)

    Article  Google Scholar 

  15. Shimizu, Y., Xu, J.G., Saegusa, S., Umehara, N.: Air-bearing surface chemical modification for low-friction head-disk interface. Microsyst. Technol. 13, 811–816 (2007)

    Article  CAS  Google Scholar 

  16. Yoshimura, Y., Aono, T., Ikeda, Y., Endou, Y., Tokisue, H., Kouno, A.: Oil-repellent treatment of a flying slider in a hard disk drive. Surface Coat. Technol. 141, 202–207 (2001)

    Article  CAS  Google Scholar 

  17. Cong, P., Kubo, T., Nanao, H., Minami, I., Mori, S.: Effect of self-assembled monolayers modified slider on head-disk tribology under volatile organic contamination. Tribol. Lett. 27, 137–143 (2007)

    Article  CAS  Google Scholar 

  18. Ambekar, R.P., Bogy, D.B., Dai, Q., Marchon, B.: Critical clearance and lubricant instability at the head-disk interface of a disk drive. Appl. Phys. Lett. 92, 033104 (2008)

    Article  Google Scholar 

  19. Izumisawa, S., Jhon, M.S.: Stability model for a lubricant film with a slider. IEEE Trans. Magn. 42, 2537–2539 (2006)

    Article  Google Scholar 

  20. He, J.Z., Hopkins, J., Duan, S.L., Johnson, K.: Time dependence of head-media interference at low fly heights. IEEE Trans. Magn. 44, 3649–3652 (2008)

    Article  Google Scholar 

  21. Boda, D., Henderson, D.: The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture. Mol. Phys. 106, 2367–2370 (2008)

    Article  CAS  Google Scholar 

  22. Ladd, A.J.C., Woodcock, L.V.: Triple-point coexistence properties of the Lennard-Jones system. Chem. Phys. Lett. 51, 155–159 (1977)

    Article  CAS  Google Scholar 

  23. Hansen, J.P., Verlet, L.: Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151 (1969)

    Article  CAS  Google Scholar 

  24. Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience, New York (1997)

    Google Scholar 

  25. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    Google Scholar 

  26. Jacob, N.I.: Intermolecular and Surface Forces. Academic Press, San Diego, CA (1992)

    Google Scholar 

  27. Christenson, H.K.: Capillary condensation due to van der Waals attraction in wet slits. Phys. Rev. Lett. 73, 1821–1824 (1994)

    Article  CAS  Google Scholar 

  28. Beaglehole, D., Radlinska, E.Z., Ninham, B.W., Christenson, H.K.: Inadequacy of Lifshitz theory for thin liquid films. Phys. Rev. Lett. 66, 2084–2087 (1991)

    Article  CAS  Google Scholar 

  29. Mate, C.M.: Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear. Oxford University Press, Oxford (2008)

    Google Scholar 

  30. Hua, W., Liu, B., Yu, S.K., Zhou, W.D.: Probability model for the intermolecular force with surface roughness considered. Tribol. Int. 40, 1047–1055 (2007)

    Article  CAS  Google Scholar 

  31. Forcada, M.L.: Instability in a system of two interacting liquid films: formation of liquid bridges between solid surfaces. J. Chem. Phys. 98, 638 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study described in this article is supported by a grant from Ministry of Education, Singapore (Project No. RG 13/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C.H., Li, B., Yu, S.K. et al. Molecular Dynamics Simulation of Lubricant Redistribution and Transfer at Near-Contact Head-Disk Interface. Tribol Lett 43, 89–99 (2011). https://doi.org/10.1007/s11249-011-9788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9788-4

Keywords

Navigation