Skip to main content
Log in

Lubricant Dewetting on the Slider’s Air-Bearing Surface in Hard Disk Drives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In current hard disk drives, the minimum air-bearing clearance is of the order of 1 nm during the read/write process. At this ultra-low spacing, lubricant from the disk often transfers to the slider’s air-bearing surface imposing a significant degradation of its performance. It is necessary to make accurate predictions of the lubricant’s response at the head–disk interface in order to engineer reliable hard disk drives. In this article, we perform numerical simulations to investigate the dewetting behavior of some perfluoropolyether lubricant films used in hard disk drives. We model the lubricant flow on the slider surface using a governing equation based on classical lubrication theory. We consider a disjoining pressure that approximates the properties of a ZTMD lubricant and compare the results with those obtained using a purely van der Waals disjoining pressure. We study the spreading of a lubricant film on a slider both at rest and while flying over a spinning disk. The effect of surface tension, air shear stress, and substrate roughness on the dewetting behavior of the film is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marchon, B., Olson, T.: Magnetic spacing trends: from LMR to PMR and beyond. IEEE Trans. Magn. 45(10), 3608–3611 (2009)

    Article  Google Scholar 

  2. Pan, D., Ovcharenko, A., Yang, M., Radicati, F., Talke, F.E.: Effect of pitch and roll static angle on lubricant transfer between disk and slider. Tribol. Lett. 53(1), 261–270 (2014)

    Article  Google Scholar 

  3. Seo, Y.W., Pan, D.Z., Ovcharenko, A., Yang, M., Talke, F.E.: Molecular dynamics simulation of lubricant transfer at the head-disk interface. magnetics. IEEE Trans. Magn. 50(11), 1–4 (2014)

    Article  Google Scholar 

  4. Ma, X., Chen, J., Richter, H.J., Tang, H., Gui, J.: Contribution of lubricant thickness to head-media spacing. IEEE Trans. Magn. 37(4), 1824–1826 (2001)

    Article  Google Scholar 

  5. Guo, X.C., Knigge, B., Marchon, B., Waltman, R.J., Carter, M., Burns, J.: Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100(4), 044306 (2006)

    Article  Google Scholar 

  6. Gui, J.: Tribology challenges for head-disk interface toward 1 Tb/in 2. IEEE Trans. Magn. 39(2), 716–721 (2003)

    Article  Google Scholar 

  7. Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of perfluoropolyalkylether films on amorphous carbon surfaces. J. Chem. Phys. 110(6), 3129–3137 (1999)

    Article  Google Scholar 

  8. Jhon, M.S., Izumisawa, S., Guo, Q., Phillips, D.M., Hsia, Y.: Simulation of nanostructured lubricant films. IEEE Trans. Magn. 39(2), 754–758 (2003)

    Article  Google Scholar 

  9. Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12(3), 163–169 (2002)

    Article  Google Scholar 

  10. Ma, X., Gui, J., Grannen, K.J., Smoliar, L.A., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of PFPE lubricants on carbon surfaces: effect of hydrogen and nitrogen content. Tribol. Lett. 6(1), 9–14 (1999)

    Article  Google Scholar 

  11. Reiter, G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68(1), 75 (1992)

    Article  Google Scholar 

  12. Xie, R., Karim, A., Douglas, J.F., Han, C.C., Weiss, R.A.: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81(6), 1251 (1998)

    Article  Google Scholar 

  13. Seemann, R., Herminghaus, S., Jacobs, K.: Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86(24), 5534 (2001)

    Article  Google Scholar 

  14. Redon, C., Brochard-Wyart, F., Rondelez, F.: Dynamics of dewetting. Phys. Rev. Lett. 66(6), 715 (1991)

    Article  Google Scholar 

  15. Becker, J., Grün, G., Seemann, R., Mantz, H., Jacobs, K., Mecke, K.R., Blossey, R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2(1), 59–63 (2003)

    Article  Google Scholar 

  16. Derjaguin, B.V., Churaev, N.V.: Structural component of disjoining pressure. J. Colloid Interface Sci. 49(2), 249–255 (1974)

    Article  Google Scholar 

  17. Blossey, R.: Thin Liquid Films: Dewetting and Polymer Flow. Springer, Berlin (2012)

    Book  Google Scholar 

  18. Scarpulla, M.A., Mate, C.M., Carter, M.D.: Air shear driven flow of thin perfluoropolyether polymer films. J. Chem. Phys. 118(7), 3368–3375 (2003)

    Article  Google Scholar 

  19. Marchon, B., Dai, Q., Nayak, V., Pit, R.: The physics of disk lubricant in the continuum picture. IEEE Trans. Magn. 41(2), 616–620 (2005)

    Article  Google Scholar 

  20. Mate, C.M.: Spreading kinetics of lubricant droplets on magnetic recording disks. Tribol. Lett. 51(3), 385–395 (2013)

    Article  Google Scholar 

  21. Tani, H., Kubota, M., Tsujiguchi, Y., Tagawa, N.: Visualization of lubricant pickup phenomena by lubricant thickness mapping on slider surface. Microsyst. Technol. 17(5–7), 1175–1178 (2011)

    Article  Google Scholar 

  22. Mate, C.M., Marchon, B., Murthy, A.N., Kim, S.H.: Lubricant-induced spacing increases at slider–disk interfaces in disk drives. Tribol. Lett. 37(3), 581–590 (2010)

    Article  Google Scholar 

  23. Wu, H., Mendez, A.R., Xiong, S., Bogy, D.B.: Lubricant reflow after laser heating in heat assisted magnetic recording. J. Appl. Phys. 117(17), 17E310 (2015)

    Article  Google Scholar 

  24. Gross, W.A., Matsch, L.A., Castelli, V., Eshel, A., Vohr, J.H., Wildmann, M.: Fluid film lubrication (No. DOE/TIC-11301). Wiley, New York, NY (1980)

    Google Scholar 

  25. Mendez, A.R., Bogy, D.B.: Lubricant flow and accumulation on the slider’s air-bearing surface in a hard disk drive. Tribol. Lett. 53(2), 469–476 (2014)

    Article  Google Scholar 

  26. Sarabi, M.S.G., Bogy, D.B.: Simulation of the performance of various PFPE lubricants under heat assisted magnetic recording conditions. Tribol. Lett. 56(2), 293–304 (2014)

    Article  Google Scholar 

  27. Karis, T.E., Marchon, B., Flores, V., Scarpulla, M.: Lubricant spin-off from magnetic recording disks. Tribol. Lett. 11(3–4), 151–159 (2001)

    Article  Google Scholar 

  28. Karis, T.E., Tyndall, G.W.: Calculation of spreading profiles for molecularly-thin films from surface energy gradients. J. Non-newton. Fluid Mech. 82(2), 287–302 (1999)

    Article  Google Scholar 

  29. Marchon, B., Dai, Q., Knigge, B., Pit, R.: Lubricant dynamics in the sub-nanometer clearance regime. IEEE Trans. Magn. 43(9), 3694–3698 (2007)

    Article  Google Scholar 

  30. Kubotera, H., Bogy, D.B.: Numerical simulation of molecularly thin lubricant film flow due to the air bearing slider in hard disk drives. Microsyst. Technol. 13(8–10), 859–865 (2007)

    Article  Google Scholar 

  31. Mate, C.M.: Taking a fresh look at disjoining pressure of lubricants at slider-disk interfaces. IEEE Trans. Magn. 47(1), 124–130 (2011)

    Article  Google Scholar 

  32. Bowles, A.P., Hsia, Y.T., Jones, P.M., Schneider, J.W., White, L.R.: Quasi-equilibrium AFM measurement of disjoining pressure in lubricant nano-films I: Fomblin Z03 on silica. Langmuir 22(26), 11436–11446 (2006)

    Article  Google Scholar 

  33. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931 (1997)

    Article  Google Scholar 

  34. Kim, H.I., Mate, C.M., Hannibal, K.A., Perry, S.S.: How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 82(17), 3496 (1999)

    Article  Google Scholar 

  35. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  36. Tyndall, G.W., Waltman, R.J., Pocker, D.J.: Concerning the interactions between Zdol perfluoropolyether lubricant and an amorphous-nitrogenated carbon surface. Langmuir 14(26), 7527–7536 (1998)

    Article  Google Scholar 

  37. http://cml.berkeley.edu/cmlair_new.html

  38. Xu, L., Ogletree, D.F., Salmeron, M., Tang, H., Gui, J., Marchon, B.: De-wetting of lubricants on hard disks. J. Chem. Phys. 112(6), 2952–2957 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rodriguez Mendez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, A.R., Bogy, D.B. Lubricant Dewetting on the Slider’s Air-Bearing Surface in Hard Disk Drives. Tribol Lett 61, 22 (2016). https://doi.org/10.1007/s11249-016-0641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0641-7

Keywords

Navigation