Skip to main content
Log in

Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nano-textured surfaces (NTSs) can reduce adhesion and friction and thus have potential to increase the reliability of micro-electro-mechanical systems and nano-electro-mechanical systems. However, deformation of the nanotextures severely limits the effectiveness of using NTSs. This article presents a novel concept of nano-surface-engineering by texturing the surface with core–shell nanostructures to produce deformation-resistant nanotextures. The NTSs were produced by thermal evaporation of Al on Si substrates to form Al nanostructures and then depositing amorphous silicon on top of Al by plasma-enhanced chemical vapor deposition. Friction and deformation of the NTSs were studied using a TriboIndenter and a scanning electron microscope. The results show that the novel NTS significantly reduced the coefficients of friction of the surface without any detectable plastic deformations of the nanotextures even after heavy scratches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)

    Article  Google Scholar 

  2. Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17, 477–517 (2003)

    Article  CAS  Google Scholar 

  3. Maboudian, R., Howe, R.T.: Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 15, 1–20 (1997)

    Article  CAS  Google Scholar 

  4. Williams, J.A., Le, H.R.: Tribology and MEMS. J. Phys. D Appl. Phys. 39, 201–214 (2006)

    Article  Google Scholar 

  5. Bhushan, B.: Tribology Issues and Opportunities in MEMS, pp. 109–119. Kluwer, Dordrecht (1998)

    Google Scholar 

  6. Douglass, M.R.: Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD). In: 1998 IEEE International Reliability Physics Symposium Proceedings 36th Annual, Anonymous IEEE, New York, NY, USA, pp. 9–16 (1998)

  7. Hornbeck, L.J.: The DMDTM projection display chip: a MEMS-based technology. MRS Bull. 26, 325–327 (2001)

    Article  Google Scholar 

  8. Zou, M., Seale, W., Wang, H.: Comparison of tribological performances of nano- and micro-textured surfaces. Proc. Inst. Mech. Eng. N (J. Nanoeng. Nanosyst.) 219, 103–110 (2005)

    Article  Google Scholar 

  9. Zou, M., Wang, H., Larson, P.R., Hobbs, K.L., Johnson, M.B., Awitor, O.K.: Ni nanodot-patterned surfaces for adhesion and friction reduction. Tribol. Lett. 24, 137–142 (2006)

    Article  CAS  Google Scholar 

  10. Zou, M., Cai, L., Wang, H.: Adhesion and friction studies of a nano-textured surface produced by spin coating of colloidal Silica nanoparticle solution. Tribol. Lett. 21, 25–30 (2006)

    Article  CAS  Google Scholar 

  11. Wang, H., Premachandran Nair, R., Zou, M., Larson, P.R., Pollack, A.L., Hobbs, K.L., Johnson, M.B., Awitor, O.K.: Friction study of a Ni nanodot-patterned surface. Tribol. Lett. 28, 183–189 (2007)

    Article  Google Scholar 

  12. Nair, R.P., Zou, M.: Surface-nano-texturing by aluminum-induced crystallization of amorphous silicon. Surf. Coat. Technol. 203, 675–679 (2008)

    Article  CAS  Google Scholar 

  13. Song, Y., Premachandran Nair, R., Zou, M., Wang, Y.A.: Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces. Thin Solid Films 518, 3801–3807 (2010)

    Article  CAS  Google Scholar 

  14. Yoon, E.-S., Singh, R.A., Kong, H., Kim, B., Kim, D.-H., Jeong, H.E., Suh, K.Y.: Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribol. Lett. 21, 31–37 (2006)

    Article  CAS  Google Scholar 

  15. Burton, Z., Bhushan, B.: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett 5, 1607–1613 (2005)

    Article  CAS  Google Scholar 

  16. Jin, Z., Yang, D.-h., Ou, X.-b.: Microstructures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate. Trans. Nonferr. Metals Soc. China 18, 312–317 (2008)

    Article  Google Scholar 

  17. Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T.-W., Li, C.-Y.: An investigation of hardness and adhesion of sputter-deposited aluminum on silicon by utilizing a continuous indentation test. J. Mater. Res. 3, 141–147 (1988)

    Article  CAS  Google Scholar 

  18. Shan, Z.W., Adesso, G., Cabot, A., Sherburne, M.P., Syed Asif, A.S., Warren, O.L., Chrzan, D.C., Minor, A.M., Alivisatos, A.P.: Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mater. 7, 947–952 (2008)

    Article  CAS  Google Scholar 

  19. Zheng, B., Wang, Y.N., Qi, M., Williams, E.H.: Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles. J. Mater. Res. 24, 2210–2214 (2009)

    Article  CAS  Google Scholar 

  20. Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., Girshick, S.L.: Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979–992 (2003)

    Article  CAS  Google Scholar 

  21. Gerberich, W.W., Mook, W.M., Cordill, M.J., Cartera, C.B., Perreya, C.R., Heberleinb, J.V., Girshickb, S.L.: Reverse plasticity in single crystal silicon nanospheres. Int. J. Plasticity 21, 2391–2405 (2005)

    Article  CAS  Google Scholar 

  22. Suh, N.P., Sin, H.-C.: The genesis of friction. Wear 69, 91–114 (1981)

    Article  CAS  Google Scholar 

  23. Komvopoulos, K., Saka, N., Suh, N.P.: The mechanism of friction in boundary lubrication. J. Tribol. 107, 452–461 (1985)

    Article  CAS  Google Scholar 

  24. Komvopoulos, K., Saka, N., Suh, N.P.: Plowing friction in dry and lubricated metal sliding. J. Tribol. 108, 301–303 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Arkansas Biosciences Institute and the University of Arkansas for major equipment funding support. We also thank the US National Science Foundation (NSF) for the support under grants CMS-0600642, CMS-0645040, and the support of the Center for Semiconductor Physics in Nanostructures (C-SPIN), an OU/UA NSF-funded MRSEC (DMR-0520550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, B.D., Wang, H., Fleming, R.A. et al. Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribol Lett 42, 51–58 (2011). https://doi.org/10.1007/s11249-011-9747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9747-0

Keywords

Navigation