Skip to main content

Mechanical Properties and Deformation Behavior of Ni Nanodot-Patterned Surfaces

  • Chapter
  • First Online:
Nano-tribology and Materials in MEMS
  • 1472 Accesses

Abstract

Surface nano-texturing has attracted great attention due to its potential for significantly reducing adhesion and friction in micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS). However, severe deformation of the nano-textures was also observed during tribological testing of nano-textured surfaces (NTSs). Therefore, understanding the mechanical properties and deformation behavior of nano-textures and nano-textured surfaces is of critical importance to the development of durable NTSs for MEMS/NEMS applications. Here, we review our recent work in understanding the mechanical properties and deformation behavior of Ni nanodot-patterned surfaces (NDPSs) on silicon substrates. First, the benefit of nanoscale surface-texturing for MEMS/NEMS application and the size-dependent mechanical properties of nanostructures are introduced. Second, various experimental techniques are described, which include methods of fabricating and characterizing Ni NDPSs as well as studying the mechanical properties and deformation behavior of NDPSs using nanoindentation. Third, methods of determining mechanical properties of Ni nanodots from nanoindentation experiments are presented. Fourth, a multi-asperity contact model for studying the nanoindentation deformation behavior of the Ni NDPSs is described. Fifth, simulation results from the multi-asperity contact model are compared to nanoindentation experiments and validated by the experimental results. Finally, the model is used to study effects of substrate, surface roughness, elastic modulus, and yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roukes, M.: Nanoelectromechanical systems face the future. Phys. World 14(2), 25–31 (2001)

    Google Scholar 

  2. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2(5), 22–29 (2007)

    Article  Google Scholar 

  3. Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17(4), 477–517 (2003)

    Article  Google Scholar 

  4. Van Spengen, W.M., Puers, R., De Wolf, I.: On the Physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17(4), 563–582 (2003)

    Article  Google Scholar 

  5. Williams, J.A., Le, H.R.: Tribology and MEMS. J.Phy. D 39(12), 201–214 (2006). (Applied Physics)

    Article  Google Scholar 

  6. Bhushan, B.: Tribology issues and opportunities in MEMS, p. 109. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  7. Douglass, M.R.: “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” 1998 IEEE International Reliability Physics Symposium Proceedings 36th Annual, pp. 9–16. Anonymous IEEE, New York (1998)

    Google Scholar 

  8. Hornbeck, L.J.: The DMDTM projection display chip: A MEMS-based technology. MRS Bull. 26(4), 325–327 (2001)

    Article  Google Scholar 

  9. Bhushan, B.: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. 21(6), 2262–2296 (2003)

    Article  Google Scholar 

  10. Maboudian, R., Carraro, C.: Surface engineering for reliable operation of MEMS devices. J. Adhes. Sci. Technol. 17(4), 583–591 (2003)

    Article  Google Scholar 

  11. Maboudian, R., Carraro, C.: Surface chemistry and tribology of MEMS. Annu. Rev. Phys. Chem. 55, 35–54 (2004)

    Article  Google Scholar 

  12. Zhao, Y.: Stiction and anti-stiction in MEMS and NEMS. Acta Mechanica Sinica 19(1), 1–10 (2003). (English Series)

    Article  Google Scholar 

  13. Maboudian, R., Howe, R.T.: Critical review: Adhesion in surface micromechanical structures. J. Vac. Sci.Technol. B, Microelectron. Process. Phenom. 15(1), 1–1 (1997)

    Article  Google Scholar 

  14. Ando, Y., Ino, J.: Friction and pull-off force on silicon surface modified by FIB. Sens. Actuators, A 57(2), 83–89 (1996)

    Article  Google Scholar 

  15. Ando, Y.: “The effect of relative humidity on friction and pull-off forces measured on submicron-size asperity arrays,” The 2nd International Colloquium on Micro-Tribology, September 15, 1997—September 18, 238, pp. 12–19. Anonymous Elsevier S.A, Janowice (2000)

    Google Scholar 

  16. Gerberich, W.W., Mook, W.M., Perrey, C.R.: Superhard silicon nanospheres. J. Mech. Phys. Solids 51(6), 979–992 (2003)

    Article  Google Scholar 

  17. Choi, C., Kim, J., and Kim, C.:”Nanoturf surfaces for reduction of liquid flow drag in microchannels,” 3rd ASME Integrated Nanosystems Conference—Design, Synthesis, and Applications, September 22, 2004—September 24, pp. 47–48. Anonymous American Society of Mechanical Engineers, Pasadena (2004)

    Google Scholar 

  18. Song, Y., Premachandran Nair, R., Zou, M.: Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces. Thin Solid Films 518(14), 3801–3807 (2010)

    Article  Google Scholar 

  19. Nair, R.P., Zou, M.: Surface-Nano-texturing by aluminum-induced crystallization of amorphous silicon. Surf. Coat. Technol. 203(5–7), 675–679 (2008)

    Article  Google Scholar 

  20. Zou, M., Wang, H., Larson, P.R.: Ni Nanodot-patterned surfaces for adhesion and friction reduction. Tribol. Lett. 24(2), 137–142 (2006)

    Article  Google Scholar 

  21. Zou, M., Cai, L., Wang, H.: Adhesion and friction studies of a nano-textured surface produced by spin coating of colloidal silica nanoparticle solution. Tribol. Lett. 21(1), 25–30 (2006)

    Article  Google Scholar 

  22. Zou, M., Cai, L., Wang, H.: Adhesion and Friction Studies of a Selectively micro/nano-textured surface produced by UV assisted crystallization of amorphous silicon. Tribol. Lett. 20(1), 43–52 (2005)

    Article  Google Scholar 

  23. Morton, B. D., Wang, H., Fleming, R. A.,: Nanoscale surface engineering with deformation-resistant core-shell nanostructures, pp. 1–8 (2011)

    Google Scholar 

  24. Yoon, E., Singh, R.A., Kong, H.: Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribol. Lett. 21(1), 31–37 (2006)

    Article  Google Scholar 

  25. Burton, Z., Bhushan, B.: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett. 5(8), 1607–1613 (2005)

    Article  Google Scholar 

  26. Zou, M., Seale, W., and Wang, H.: “Comparison of Tribological Performances of Nano- and Micro-Textured Surfaces,” Proceedings of the Institution of Mechanical Engineers, Part N (J Nanoeng Nanosystems). 219(3):103–10 (2005)

    Google Scholar 

  27. Wang, H., Premachandran Nair, R., Zou, M.: Friction study of a Ni Nanodot-oatterned surface. Tribol. Lett. 28(2), 183–189 (2007)

    Article  Google Scholar 

  28. Nix, W.D.: Elastic and plastic properties of thin films on substrates: Nanoindentation techniques. Mater. Sci. Eng., A A234–23, 37–44 (1997)

    Google Scholar 

  29. Shugurov, A., Panin, A., Chun, H.-G.:”Size effects on the mechanical properties of thin metallic films studied by nanoindentation,” 8th Korea–Russia International Symposium on Science and Technolog, vol. 3, pp. 168–72. Anonymous IEEE, Piscataway (2004)

    Google Scholar 

  30. Son, D., Jeong, J., Kwon, D.: Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film. Thin Solid Films 437(1–2), 182–187 (2003)

    Article  Google Scholar 

  31. Kracke, B., Damaschke, B.: Measurement of Nanohardness and Nanoelasticity of thin gold films with scanning force microscope. Appl. Phys. Lett. 77(3), 361–363 (2000)

    Article  Google Scholar 

  32. Schaefer, D.M., Patil, A., Andres, R.P.: Nanoindentation of a supported Au cluster. Appl. Phys. Lett. 63(11), 1492–1494 (1993)

    Article  Google Scholar 

  33. Schaefer, D.M., Patil, A., Andres, R.P.: Elastic properties of individual nanometer-size supported gold clusters. Physical Review B 51(8), 5322–5332 (1995). (Condensed Matter)

    Article  Google Scholar 

  34. Wang, H., Zou, M., Larson, P. R.: Nanomechanical Properties of a Ni Nanodot-Patterned Surface. Nanotechnology, 19(29), (2008)

    Google Scholar 

  35. Wang, H., Zou, M., Jackson, R.L.: Nanoindentation modeling of a Nanodot-patterned surface on a deformable substrate. Int. J. Solids Struct. 47(22–23), 3203–3213 (2010)

    Article  MATH  Google Scholar 

  36. Loo, Y., Willett, R.L., Baldwin, K.W.: Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics. Appl. Phys. Lett. 81(3), 562–562 (2002)

    Article  Google Scholar 

  37. Donthu, S.K., Pan, Z., Shekhawat, G.S.: Near-field scanning optical microscopy of ZnO nanopatterns fabricated by micromolding in capillaries. J. Appl. Phys. 98(2), 1–5 (2005)

    Article  Google Scholar 

  38. Juang, J.Y., Bogy, D.B.: Nanotechnology advances and applications in information storage. Microsyst. Technol. 11(8–10), 950–957 (2005)

    Article  Google Scholar 

  39. Di Fabrizio, E., Cojoc, D., Cabrini, S.:”Nano-optical elements fabricated by e-beam and x-ray lithography,” nano- and micro-optics for information systems, August 3,4 2003, 5225, pp. 113–125. Anonymous SPIE, San Diego (2003)

    Google Scholar 

  40. Murillo, R., Van Wolferen, H.A., Abelmann, L.: “Fabrication of patterned magnetic nanodots by laser interference lithography,” Proceedings of the 30th International Conference on Micro- and Nano-Engineering, September 19, 2004–September 22. Anonymous Elsevier 78–79, 260–265 (2005)

    Google Scholar 

  41. Kono, Y., Sekiguchi, A., Hirai, Y.: “Study on nano imprint lithography by the pre-exposure process (PEP),” advances in resist technology and processing XXII. Anonymous SPIE—Int. Soc. Opt. Eng. USA 5753, 912–925 (2005)

    Google Scholar 

  42. Yao, J., Yan, X., Lu, G.: Patterning colloidal crystals by lift-up soft lithography. Adv. Mater. 16(1), 81–84 (2004)

    Article  Google Scholar 

  43. Choi, D., Jang, S.G., Yu, H.K.: Two-dimensional polymer Nanopattern by using particle-assisted soft lithography. Chem. Mater. 16(18), 3410–3413 (2004)

    Article  Google Scholar 

  44. Chik, H., Liang, J., Cloutier, S.G.: Periodic array of uniform ZnO Nanorods by second-order self-assembly. Appl. Phys. Lett. 84(17), 3376–3378 (2004)

    Article  Google Scholar 

  45. Masuda, H., Satoh, M.: Fabrication of gold Nanodot array using anodic porous alumina as an evaporation mask. Jan. J. Appl. Phys, Part 2 35(1), 126–129 (1996). (Letters)

    Article  Google Scholar 

  46. Masuda, H., Yasui, K., Nishio, K.: Fabrication of ordered arrays of multiple Nanodots using anodic porous alumina as an evaporation mask. Adv. Mater. 12(14), 1031–1033 (2000)

    Article  Google Scholar 

  47. Liang, J., Chik, H., Yin, A.: Two-dimensional lateral superlattices of Nanostructures: Nonlithographic formation by anodic membrane template. J. Appl. Phys. 91(4), 2544–2544 (2002)

    Article  Google Scholar 

  48. Masuda, H., Fukuda, K.: Ordered metal Nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216), 1466–1468 (1995)

    Article  Google Scholar 

  49. Li, A.P., Muller, F., Birner, A.: Hexagonal pore arrays with a 50–420 Nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84(11), 6023–6026 (1998)

    Article  Google Scholar 

  50. Rozhok, S., Jung, S., Chandrasekhar, V.: atomic force microscopy of nickel dot arrays with tuning fork and Nanotube probe. J. Vac. Sci.Technol. B: Microelectron. Nanometer Struct. 21(1), 323–325 (2003)

    Article  Google Scholar 

  51. Sandberg, R.L., Allred, D.D., Johnson, J.E.: A Comparison of Uranium Oxide and Nickel as Single-Layer Reflectors from 2.7 to 11.6 Nm. Proc. SPIE Int. Soc. Opt. Eng. 5193(1), 191–203 (2004)

    Article  Google Scholar 

  52. Johnson, K.L.: Conatct mechanics. Cambridge University Press, New York (1987)

    Google Scholar 

  53. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  54. Mirshams, R.A., Pothapragada, R.M.: Correlation of Nanoindentation measurements of nickel made using geometrically different indenter tips. Acta Mater. 54(4), 1123–1134 (2006)

    Article  Google Scholar 

  55. Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84(11), 1940–1942 (2004)

    Article  MathSciNet  Google Scholar 

  56. Pethica, J. B., Tabor, D.:”Contact of characterised metal surfaces at very low loads: deformation and adhesion,” Second European Conference on Surface Science, 89, pp. 182–90. Anonymous Netherlands (1979)

    Google Scholar 

  57. Tabor, D.: “A Simple theory of static and dynamic hardness,” Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 192, pp. 247–274 (1948)

    Google Scholar 

  58. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343–354 (2005)

    Article  Google Scholar 

  59. Ruoff, A.L.: On the yield strength of diamond. J. Appl. Phys. 50(5), 3354–3356 (1979)

    Article  Google Scholar 

  60. Mesarovic, S.D., Fleck, N.A.: Frictionless indentation of dissimilar elastic-plastic spheres. Int. J. Solids Struct. 37(46–47), 7071–7091 (2000)

    Article  MATH  Google Scholar 

  61. Greenwood, J.A., Johnson, K.L., Matsubara, E.: A surface roughness parameter in hertz contact. Wear 100, 47–57 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for the work reviewed was provided by the National Science Foundation, Arkansas Biosciences Institute, and the University of Arkansas. Contributions to the work reviewed from our collaborators Drs. Mathew Johnson (University of Oklahoma) and Robert Jackson (Auburn University) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zou, M., Wang, H. (2013). Mechanical Properties and Deformation Behavior of Ni Nanodot-Patterned Surfaces. In: Sinha, S., Satyanarayana, N., Lim, S. (eds) Nano-tribology and Materials in MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36935-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36935-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36934-6

  • Online ISBN: 978-3-642-36935-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics