Skip to main content
Log in

A New AFM Nanotribology Method Using a T-Shape Cantilever with an Off-Axis Tip for Friction Coefficient Measurement with Minimized Abbé Error

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A new AFM (atomic force microscopy) nanotribology method using a T-shape cantilever with an off-axis tip (Nat Nanotechnol 2:507–514, 2007) has been developed for measuring friction coefficient at nanometer scale. In this method, signals due to both bending and twisting of the T-shape AFM cantilever are detected simultaneously. For a T-shape AFM cantilever, the bending is caused by the normal load and the twisting is caused by both the normal and the lateral loads. The twisting generated by the normal load is calibrated in advance. Consequently, the twisting only due to the lateral load can be decoupled from the total lateral voltage signal. And the friction coefficient can be finally determined based on a conversion relationship between the normal and lateral voltage signals of the AFM photodetector. A practical procedure for minimizing Abbé error in friction coefficient measurement has also been introduced. The proposed new method is simple and accurate, and requires the least operation for friction coefficient measurement at nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maboudian, R., Carraro, C.: Surface chemistry and tribology of MEMS. Annu. Rev. Phys. Chem. 55, 35–54 (2004)

    Article  CAS  Google Scholar 

  2. Canter, N.: Understanding friction laws at the nanoscale and their relation to the macroscale. Tribol. Lubr. Technol. 65, 10–11 (2009)

    CAS  Google Scholar 

  3. Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  4. Gerbig, Y.B., Ahmed, S.I.U., Chetwynd, D.G., Haefke, H.: Effect of nanoscale topography and chemical composition of surfaces on their microfrictional behaviour. Tribol. Lett. 21, 161–168 (2006)

    Article  CAS  Google Scholar 

  5. Terada, Y., Harada, M., Ikehara, T., Nishi, T.: Nanotribology of polymer blends. J. Appl. Phys. 87, 2803–2807 (2000)

    Article  CAS  Google Scholar 

  6. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)

    Google Scholar 

  7. Mate, C.M., Mcclelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  CAS  Google Scholar 

  8. Li, J.W., Wang, C., Shang, G.Y., Xu, Q.M., Lin, Z., Guan, J.J., Bai, C.L.: Friction coefficients derived from apparent height variations in contact mode atomic force microscopy images. Langmuir 15, 7662–7669 (1999)

    Article  CAS  Google Scholar 

  9. Tocha, E., Schonherr, H., Vancso, G.J.: Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22, 2340–2350 (2006)

    Article  CAS  Google Scholar 

  10. Tamayo, J., Gonzalez, L., Gonzalez, Y., Garcia, R.: Compositional mapping of semiconductor structures by friction force microscopy. Appl. Phys. Lett. 68, 2297–2299 (1996)

    Article  CAS  Google Scholar 

  11. Liu, E., Blanpain, B., Celis, J.P.: Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996)

    Article  CAS  Google Scholar 

  12. Bogdanovic, G., Meurk, A., Rutland, M.W.: Tip friction—torsional spring constant determination. Colloids Surf. B 19, 397–405 (2000)

    Article  CAS  Google Scholar 

  13. Xie, H., Vitard, J., Haliyo, S., Regnier, S.: Optical lever calibration in atomic force microscope with a mechanical lever. Rev. Sci. Instrum. 79, 096101 (2008)

    Article  Google Scholar 

  14. Li, Q., Kim, K.S., Rydberg, A.: Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77, 065105 (2006)

    Article  Google Scholar 

  15. Cannara, R.J., Eglin, M., Carpick, R.W.: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77, 053701 (2006)

    Article  Google Scholar 

  16. Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)

    Article  CAS  Google Scholar 

  17. Neumeister, J.M., Ducker, W.A.: Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev. Sci. Instrum. 65, 2527–2531 (1994)

    Article  Google Scholar 

  18. Wei, Z.Q., Wang, C., Bai, C.L.: Investigation of nanoscale frictional contact by friction force microscopy. Langmuir 17, 3945–3951 (2001)

    Article  CAS  Google Scholar 

  19. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  CAS  Google Scholar 

  20. Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)

    Article  CAS  Google Scholar 

  21. Sahin, O., Magonov, S., Su, C., Quate, C.F., Solgaard, O.: An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    Article  Google Scholar 

  22. Mullin, N., Vasilev, C., Tucker, J.D., Hunter, C.N., Weber, C.H.M., Hobbs, J.K.: “Torsional tapping” atomic force microscopy using T-shaped cantilevers. Appl. Phys. Lett. 94, 173109 (2009)

    Article  Google Scholar 

  23. Sahin, O., Erina, N.: High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19, 445717 (2008)

    Article  Google Scholar 

  24. Legleiter, J.: The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20, 245703 (2009)

    Article  Google Scholar 

  25. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  CAS  Google Scholar 

  26. Nie, H.Y., Motomatsu, M., Mizutani, W., Tokumoto, H.: Local elasticity measurement on polymers using atomic force microscopy. Thin Solid Films 273, 143–148 (1996)

    Article  CAS  Google Scholar 

  27. Hoh, J.H., Engel, A.: Friction effects on force measurements with an atomic-force microscope. Langmuir 9, 3310–3312 (1993)

    Article  CAS  Google Scholar 

  28. Proksch, R., Schaffer, T.E., Cleveland, J.P., Callahan, R.C., Viani, M.B.: Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 15, 1344–1350 (2004)

    Article  Google Scholar 

  29. Liu, Y., Yang, J.: Coupling effects of refractive index discontinuity, spot size and spot location on the deflection sensitivity of optical-lever based atomic force microscopy. Nanotechnology 19, 235501 (2008)

    Article  Google Scholar 

  30. Straehla, J.P., Limpoco, F.T., Dolgova, N.V., Keselowsky, B.G., Sawyer, W.G., Perry, S.S.: Nanomechanical probes of single corneal epithelial cells: shear stress and elastic modulus. Tribol. Lett. 38, 107–113 (2010)

    Article  Google Scholar 

  31. Shon, Y.S. Jr., Colorado, R., Perry, S., Lee, T.R.: Sprioalkanedithiol-based SAM’s reveal unique insight into the wettabilities and frictional properties of organic thin films. J. Am. Chem. Soc. 122, 7556–7563 (2000)

    Google Scholar 

  32. Pettersson, T., Nordgren, N., Rutland, M.W.: Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid. Rev. Sci. Instrum. 78, 093702 (2007)

    Article  Google Scholar 

  33. Tocha, E., Song, J., Schonherr, H., Vancso, G.J.: Calibration of friction force signals in atomic force microscopy in liquid media. Langmuir 23, 7078–7082 (2007)

    Article  CAS  Google Scholar 

  34. Ruan, J.A., Bhushan, B.: Atomic-scale friction measurements using friction force microscopy.1. General-principles and new measurement techniques. J. Tribol. 116, 378–388 (1994)

    Article  CAS  Google Scholar 

  35. Schumacher, A., Kruse, N., Prins, R., Meyer, E., Luthi, R., Howald, L., Guntherodt, H.J., Scandella, L.: Influence of humidity on friction measurements of supported MoS2 single layers. J. Vac. Sci. Technol. B 14, 1264–1267 (1996)

    Article  CAS  Google Scholar 

  36. Schwarz, U.D., Zworner, O., Koster, P., Wiesendanger, P.: Quantitative analysis of the frictional properties of solid materials at low loads.2. Mica and germanium sulfide. Phys. Rev. B 56, 6997–7000 (1997)

    Article  CAS  Google Scholar 

  37. Breakspear, S., Smith, J.R., Nevell, T.G., Tsibouklis, J.: Friction coefficient mapping using the atomic force microscope. Surf. Interface Anal. 36, 1330–1334 (2004)

    Article  CAS  Google Scholar 

  38. Hall, C.: Polymer Materials: An Introduction for Technologists and Scientists. Wiley, New York (1989)

  39. Dong, M.D., Husale, S., Sahin, O.: Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009)

    Article  CAS  Google Scholar 

  40. Oncins, G., Vericat, C., Sanz, F.: Mechanical properties of alkanethiol monolayers studied by force spectroscopy. J. Chem. Phys. 128, 044701 (2008)

    Article  Google Scholar 

  41. Le Grimellec, C., Lesniewska, E., Giocondi, M.C., Finot, E., Finot, E., Vie, V., Goudonnet, J.P.: Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys. J. 75, 695–703 (1998)

    Article  Google Scholar 

  42. Zhang, G.X.: A study on the Abbe principle and Abbe Error. CIRP Ann. Manuf. Technol. 38, 525–528 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from Ontario Centers of Excellence (OCE) and LANXESS Inc. J. Yang is also grateful for the support from Canada Foundation for Innovation (CFI), Natural Science and Engineering Research Council of Canada (NSERC), and Canadian Institutes of Health Research (CIHR). Y. Liu would appreciate the fellowship support from Ontario Graduate Scholarship (OGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 983 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Leung, K.M., Nie, Hy. et al. A New AFM Nanotribology Method Using a T-Shape Cantilever with an Off-Axis Tip for Friction Coefficient Measurement with Minimized Abbé Error. Tribol Lett 41, 313–318 (2011). https://doi.org/10.1007/s11249-010-9699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9699-9

Keywords

Navigation