Skip to main content
Log in

Evolution of Wear Characteristics and Frictional Behavior in MEMS Devices

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A surface-micromachined nanotractor device has been used to investigate the tribological behavior of MEMS devices made of polycrystalline silicon. An accelerated wear test, spanning several hundreds of thousands of cycles, was developed to monitor the evolution of wear characteristics and frictional behavior during its operational lifetime. Postmortem microscopic observations of the wear surfaces revealed features that can be categorized into two regimes of wear: (i) adhesion-dominated wear and (ii) third-body wear. The former was characterized by asperity blunting, plastic deformation of asperity peaks, and smearing of fine wear debris into a thin-surface film. With an increased number of wear cycles, the wear mechanism transitioned to the latter regime which consisted of debris agglomeration and material removal through scratches induced by these agglomerates. Finally, it was theorized that one of the agglomerates grows to a large size, adheres to one of the contact surfaces and causes severe wear in a localized region on the counter surface to lock the two surfaces and cause device failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tanner, D.M., Dugger, M.T.: Wear mechanisms in reliability methodology. In: Proceedings of the SPIE: The International Society for Optical Engineering, vol. 4980, pp. 22–40 (2003)

  2. Sundararajan, S., Bhushan, B.: Micro/nanoscale tribology of MEMS materials, lubricants and devices. In: Fundamentals of Tribology and Bridging the Gap Between Macro- and Micro/Nanoscales, Proceedings of the NATO Advanced Study Institute, held in Keszthely, Hungary, August 13–25, 2000. Kluwer Academic Publishers, Printed in the Netherlands, pp. 821–850 (2001)

  3. Knapp, J.A., de Boer, M.P.: Mechanics of microcantilever beams subjected to combined electrostatic and adhesive forces. J. Microelectromech. Syst. 11, 754–764 (2002)

    Article  CAS  Google Scholar 

  4. Wang, W., Wang, Y., Bao, H., Xiong, B., Bao, M.: Friction and wear properties in MEMS. Sens. Actuators A 9798, 486–491 (2002)

    Google Scholar 

  5. Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques and adhesion theory. J. Adhes. Sci. Technol. 17, 477–517 (2003)

    Article  CAS  Google Scholar 

  6. Maboudian, R., Carraro, C.: Surface engineering for reliable operation of MEMS devices. J. Adhes. Sci. Technol. 17, 583–591 (2003)

    Article  CAS  Google Scholar 

  7. van Spengen, W.M., Puers, R., de Wolf, I.: On the physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17, 563–582 (2003)

    Article  Google Scholar 

  8. Tas, N.R., Gui, C., Elwenspoek, M.: Static friction in elastic adhesion contacts in MEMS. J. Adhes. Sci. Technol. 17, 547–561 (2003)

    Article  CAS  Google Scholar 

  9. Zhao, Y.-P., Wang, L.S., Yu, T.X.: Mechanics of adhesion in MEMS—a review. J. Adhes. Sci. Technol. 17(4), 519–546 (2003)

    Article  CAS  Google Scholar 

  10. Tanner, D.M., Parson, T.B., Corwin, A.D., Walraven, J.A., Wittwer, J.W., Boyce, B.L., Winzer, S.R.: Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806–1811 (2007)

    Article  CAS  Google Scholar 

  11. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)

    Article  Google Scholar 

  12. Bhushan, B.: Nanotribology and nanomechanics in nano/biotechnology. Phil. Trans. R. Soc. A 366, 1499–1537 (2008)

    Article  CAS  Google Scholar 

  13. Zanoria, E., Danyluk, S., McNallan, M.: Effects of length, diameter and population density of tribological rolls on friction between self-mated silicon. Wear 181–183, 784–789 (1995)

    Google Scholar 

  14. Ding, J.-N., Yang, J.-C., Cai, L.: The initial sliding microfriction properties of polysilicon films. Int. J. Nonlinear Sci. Numer. Simul. 3, 519–522 (2002)

    CAS  Google Scholar 

  15. Gupta, B.K., Bhushan, B., Chavellier, J.: Modification of tribological properties of silicon by boron ion implantation. Tribol. Trans. 37, 601–607 (1994)

    Article  CAS  Google Scholar 

  16. Bhushan, B., Li, X.D.: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12, 54–63 (1997)

    Article  CAS  Google Scholar 

  17. Schmid, S.R., Hector, L.G. Jr., Elings, J., Hampel, H., Piehler, H.: Single asperity plowing of metallic and polymeric surfaces in an atomic force microscope: an overview of recent developments. In: Mater. Res. Soc., Fundamentals of Nanoindentation and Nanotribology (USA), pp. 391–397 (1998)

  18. Chung, K.-H., Jang, C.-E., Kim, D.-E.: Wear characteristics of microscopic bushings for MEMS applications investigated by an AFM. J. Micromech. Microeng. 17, 1877–1887 (2007)

    Article  CAS  Google Scholar 

  19. Gatzen, H.H., Beck, M.: Wear of single crystal silicon as a function of surface roughness. Wear 254, 907–910 (2003)

    Article  CAS  Google Scholar 

  20. Beerschwinger, U., Mathieson, D., Reuben, R.L., Yang, S.J.: A study of wear on MEMS contact morphologies. J. Micromech. Microeng. 4, 95–105 (1994)

    Article  CAS  Google Scholar 

  21. Beerschwinger, U., Albrecht, T., Mathieson, D., Reuben, R.L., Yang, S.J., Taghizadeh, M.: Wear at microscopic scales and light loads for MEMS applications. Wear 181, 426–435 (1995)

    Google Scholar 

  22. Mehregany, M., Senturia, S.D., Lang, J.H.: Measurement of wear in polysilicon micromotors. IEEE Trans. Electron Devices 39, 1136–1143 (1992)

    Article  Google Scholar 

  23. de Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R., Corwin, A.D., Walraven, J.A., Redmond, J.M.: High performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13, 63–74 (2004)

    Article  Google Scholar 

  24. Corwin, A.D., de Boer, M.P.: Effect of adhesion on dynamic and static friction in surface micromachining. Appl. Phys. Lett. 84, 2451–2453 (2004)

    Article  CAS  Google Scholar 

  25. Guo, Z.S., Meng, Y.G., Su, C.J., Wu, H.: An on-chip micro-friction tester for tribology research of silicon based MEMS devices. Microsyst. Technol. 14, 109–118 (2008)

    Article  CAS  Google Scholar 

  26. Grierson, D.S., Konicek, A.R., Wabiszewski, G.E., Sumant, A.V., de Boer, M.P., Corwin, A.D., Carpick, R.W.: Characterization of microscale wear in a polysilicon-based MEMS device using AFM and PEEM–NEXAFS spectromicroscopy. Tribol. Lett. 36, 233–238 (2009)

    Article  CAS  Google Scholar 

  27. Alsem, D.H., Dugger, M.T., Stach, E.A., Ritchie, R.O.: Micron-scale friction and sliding wear of polycrystalline silicon thin structural films in ambient air. J. Microelectromech. Syst. 17, 1144 (2008)

    Google Scholar 

  28. Goertz, P., Zhu, X.-Y., Houston, J.E.: Friction, wear and aging of an alkoxy-monolayer boundary lubricant on silicon. Tribol. Lett. 30, 205–213 (2009)

    Article  Google Scholar 

  29. Kimberleya, J., Cooneya, R.S., Lambrosa, J., Chasiotis, I., Barker, N.S.: Failure of Au RF-MEMS switches subjected to dynamic loading. Sens Actuators A 154, 140–148 (2009)

    Article  Google Scholar 

  30. Brown, C., Rezvanian, O., Zikry, M.A., Krim, J.: Temperature dependence of asperity contact and contact resistance in gold RF MEMS switches J. Micromech. Microeng. 19, 025006-1–025006-9 (2009)

    Google Scholar 

  31. Rezvanian, O., Zikry, M.A.: Inelastic contact behavior of crystalline asperities in RF MEMS devices. J. Eng. Mater. Technol. 131, 011002-1–011002-10 (2009)

  32. Flater, E.E., Corwin, A.D., de Boer, M.P., Carpick, R.W.: In situ wear studies of surface micromachined interfaces subjected to controlled loading. Wear 260, 580–593 (2006)

    Article  CAS  Google Scholar 

  33. Hankins, M.G., Resnick, P.J., Clews, P.J., Mayer, T.M., Wheeler, D.R., Tanner, D. M., Plass, R.A.: Vapor deposition of amino-functionalized self-assembled monolayers on MEMS. In: Proceedings of the SPIE, San Francisco, vol. 4980, pp. 238–247 (2003)

  34. Corwin, A.D., de Boer, M.P.: A linearized method to measure dynamic friction of microdevices. Exp. Mech. 49(3), 395–401 (2008)

    Article  Google Scholar 

  35. Corwin, A.D., de Boer, M.P.: Frictional aging and sliding bifurcation in monolayer-coated micromachines. J. Microelectromech. Syst. 18, 250 (2009)

    Article  CAS  Google Scholar 

  36. Corwin, A. D., de Boer, M. P.: Frictional aging, de-aging, and re-aging in a monolayer-coated micromachined interface. Phys Rev. B 81, 174109 (2010)

    Article  Google Scholar 

  37. Corwin, A.D., de Boer, M.P.: Scripting software for MEMS automation and actuation (2009) (in preparation)

  38. Sniegowski, J.J., de Boer, M.P.: IC-compatible polysilicon surface micromachining. Annu. Rev. Mater. Sci. 30, 299–333 (2000)

    Google Scholar 

  39. Alsem, D.H., Stach, E.A., Dugger, M.T., Enachescu, M., Ritchie, R.O.: An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air. Thin Solid Films 515, 3259–3266 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the staff of Microelectronics Development Laboratory at Sandia National Laboratories, Albuquerque, NM for fabrication and processing of the devices. Acknowledgements are also due to Mr. Michael Rye who assisted in SEM characterization of the wear surfaces. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Finally, the authors are thankful to the anonymous reviewer who has provided insightful comments for improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghatu Subhash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subhash, G., Corwin, A.D. & de Boer, M.P. Evolution of Wear Characteristics and Frictional Behavior in MEMS Devices. Tribol Lett 41, 177–189 (2011). https://doi.org/10.1007/s11249-010-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9696-z

Keywords

Navigation