Skip to main content
Log in

Space Tribometers: Design for Exposed Experiments on Orbit

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Eight pin-on-disk tribometers have been made for testing materials in space on board the International Space Station. They will be exposed directly to the low earth orbit (LEO) environment on board the “Materials on the International Space Station Experiments” platform where they will experience extreme conditions including atomic oxygen, ultrahigh vacuum, radiation (including UV radiation), and thermal ranges from −40 to 60 °C. In order to survive launch and LEO, these tribometers were designed to be extremely compact, rugged, and reliable. Pin-on-disk tribology experiments are now being performed with a 13.2 mm/s sliding velocity (14 RPM at 9 mm wear track radius) and a 1 N normal load with hemispherical pin of 1.5875 mm radius. Materials tested include MoS2/Sb2O3/Au, MoS2/Sb2O3/C, YSZ/Au/MoS2/DLC, and SiO-doped DLC coatings, and bulk samples of polytetrafluoroethylene (PTFE) alumina nanocomposites and gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang, J.C., De Groh, K.K.: Materials issues in the space environment. Mrs Bull. 35, 12–16 (2010)

    Google Scholar 

  2. Edwards, D.L., Tighe, A.P., Eesbeek, M.V., Kimoto, Y., De Groh, K.K.: Overview of the natural space environment and ESA, JAXA, and NASA materials flight experiments. Mrs Bull. 35, 25–34 (2010)

    CAS  Google Scholar 

  3. De Groh, K.K., Banks, B.A., McCarthy, C.E., Rucker, R.N., Roberts, L.M., Berger, L.A.: MISSE 2 peace polymers atomic oxygen erosion experiment on the international space station. High Perform Polym. 20, 388–409 (2008)

    Article  Google Scholar 

  4. Dever, J.A., Miller, S.K., Sechkar, E.A., Wittberg, T.N.: Space environment exposure of polymer films on the materials international space station experiment: Results from MISSE 1 and MISSE 2. High Perform Polym. 20, 371–387 (2008)

    Article  CAS  Google Scholar 

  5. Walters, R.J., Garner, J.C., Lam, S.N., Vasquez, J.A., Braun, W.R., Ruth, R.E., Messenger, S.R., Lorentzen, J.R., Bruninga, R., Jenkins, P.P., Flatico, J.M., Wilt, D.M., Piszczor, M.F., Greer, L.C., Krasowski, M.J.: Materials on the international space station - forward technology solar cell experiment. Mat. Sci. Eng. B-Solid. 116, 257–263 (2005)

    Article  Google Scholar 

  6. Jenkins, P.P., Walters, J.R., Michael, J.K., John, J.C., Perry, G.B., John, A.V., Denis, R.M., Susie, N.L., William, R.B., Robert, S., Norman, F.P., Joseph, M.F., Lawrence, C.G., Karen, B.G., William, H.K., and Pippin, H.G.: MISSE 7: building a permanent environmental testbed for the international space station. AIP,(2009)

  7. Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: In situ approaches to materials tribology. Mrs Bull. 33, 1145–1148 (2008)

    Google Scholar 

  8. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid-solid contacts. Mrs Bull. 33, 1159–1167 (2008)

    CAS  Google Scholar 

  9. Banks, B.A., Miller, S.K., de Groh, K.K.: Low earth orbital atomic oxygen interactions with materials. In: Second International Energy Conversion Engineering Conference. Providence, Rhode Island (2004)

    Google Scholar 

  10. Grossman, E., Gouzman, I.: Space environment effects on polymers in low earth orbit. Nucl. Instrum. Meth. B. 208, 48–57 (2003)

    Article  CAS  Google Scholar 

  11. ASTM: Standard solar constant and zero air mass solar spectral irradiance tables. ASTM E490 (2006)

  12. ASTM: Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface. ASTM G173 - 03e1)

  13. Dever, J.A.: Low earth orbital atomic oxygen and ultraviolet radiation effects on polymers. E-5943; NAS 1.15:103711; NASA-TM-103711 (1991)

  14. Miles, J.W.: On structural fatigue under random loading. J. Aeronaut. Sci. 21, 753–762 (1954)

    Google Scholar 

  15. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)

    Article  CAS  Google Scholar 

  16. Mcelwain, S.E., Blanchet, T.A., Schadler, L.S., Sawyer, W.G.: Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. T. 51, 247–253 (2008)

    Article  CAS  Google Scholar 

  17. Aouadi, S.M., Paudel, Y., Luster, B., Stadler, S., Kohli, P., Muratore, C., Hager, C., Voevodin, A.A.: Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications. Tribol. Lett. 29, 95–103 (2008)

    Article  CAS  Google Scholar 

  18. Martin, J.M., Le.Mogne, T., Boehm, M., Grossiord, C.: Tribochemistry in the analytical UHV tribometer. Tribol. Int. 32, 617–626 (1999)

    Article  CAS  Google Scholar 

  19. Muratore, C., Voevodin, A.A.: Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings. Surf. Coat. Tech. 201, 4125–4130 (2006)

    Article  CAS  Google Scholar 

  20. Roberts, E.W.: Ultralow friction films of MoS2 for space applications. Thin Solid Films 181, 461–473 (1989)

    Article  CAS  Google Scholar 

  21. Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010)

    Article  CAS  Google Scholar 

  22. Tagawa, M., Muromoto, M., Hachiue, S., Yokota, K., Ohmae, N., Matsumoto, K., Suzuki, M.: Hyperthermal atomic oxygen interaction with MoS2 lubricants and relevance to space environmental effects in low earth orbit - effects on friction coefficient and wear-life. Tribol. Lett. 18, 437–443 (2005)

    Article  CAS  Google Scholar 

  23. Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)

    CAS  Google Scholar 

  24. Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films. Tribol. Lett. 23, 155–163 (2006)

    Article  CAS  Google Scholar 

  25. Fleischauer, P.D., Hilton, M.R., Raju, B.K., Vedachalam, N., Wei, L.Y., Huang, K.W., Nishimura, M.: International applications of space tribology. Tribol. Int. 23, 135–147 (1990)

    Article  Google Scholar 

  26. Hamilton, M.A., Alvarez, L.A., Mauntler, N.A., Argibay, N., Colbert, R., Burris, D.L., Muratore, C., Voevodin, A.A., Perry, S.S., Sawyer, W.G.: A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings. Tribol. Lett. 32, 91–98 (2008)

    Article  CAS  Google Scholar 

  27. Voevodin, A.A., Fitz, T.A., Hu, J.J., Zabinski, J.S.: Nanocomposite tribological coatings with “Chameleon” Surface adaptation. J. Vac. Sci. Technol. A. 20, 1434–1444 (2002)

    Article  CAS  Google Scholar 

  28. Baker, C.C., Chromik, R.R., Wahl, K.J., Hu, J.J., Voevodin, A.A.: Preparation of chameleon coatings for space and ambient environments. Thin Solid Films 515, 6737–6743 (2007)

    Article  CAS  Google Scholar 

  29. Chromik, R.R., Baker, C.C., Voevodin, A.A., Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262, 1239–1252 (2007)

    Article  CAS  Google Scholar 

  30. Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 39, R311–327 (2006)

    Article  CAS  Google Scholar 

  31. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

    Article  CAS  Google Scholar 

  32. Bares, J.A., Sumant, A.V., Grierson, D.S., Carpick, R.W., Sridharan, K.: Small amplitude reciprocating wear performance of diamond-like carbon films: Dependence of film composition and counterface material. Tribol. Lett. 27, 79–88 (2007)

    Article  CAS  Google Scholar 

  33. [33].Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., and Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101 (2007)

  34. Prasad, S.V.: Personal communication. (2009)

  35. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)

    Article  Google Scholar 

  36. Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: Uncertainty analysis for friction coefficient measurements. J. Tribol.-T Asme. 127, 673–678 (2005)

    Article  Google Scholar 

  37. Gao, F., Erdemir, A., Tysoe, W.T.: The tribological properties of low-friction hydrogenated diamond-like carbon measured in ultrahigh vacuum. Tribol. Lett. 20, 221–227 (2005)

    Article  CAS  Google Scholar 

  38. Kim, H.I., Lince, J.R., Eryilmaz, O.L., Erdemir, A.: Environmental effects on the friction of hydrogenated dlc films. Tribol. Lett. 21, 53–58 (2006)

    Article  CAS  Google Scholar 

  39. Martin, J.M., LeMogne, T.: Tribo-oxidation in UHV experiments. Analusis. 25, M28–30 (1997)

    CAS  Google Scholar 

  40. Singer, I.L., LeMogne, T., Donnet, C., Martin, J.M.: Friction behavior and wear analysis of sic sliding against Mo in SO2, O2 and H2S at gas pressures between 4 and 40 pa. Tribol. T. 39, 950–956 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project, designed, developed, and eventually delivered tribometers to the International Space Station. This could not be possible without significant collaborations and support from the research community. Significant thanks are owed to: John Jones, Michelle Ewy, Andrey Voevodin, Shane Juhl, Chris Muratore, Justin Lenoff, Jeffrey Zabinski, and Andy Korenyi-Both, Gary Pippin, Andy Robb, Many Urcia, Miria Finckenor, Phillip Jenkins, David Burris, Robert Carpick, Andy Konicek, Somuri Prasad, Chandra Venkatraman, Jim Keith, Rachel Colbert, Jennifer Vail, Nick Argibay, Jason Steffens, Dan Dickrell, Scott Perry, Linda Schadler, Thierry Blanchet, and Joe Priester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Appendix 1: Uncertainty Analysis for the Space Tribometers

Appendix 1: Uncertainty Analysis for the Space Tribometers

The uncertainty analysis for the friction coefficient follows the methods described by Burris and Sawyer [35] and Schmitz et al. [36]. To a reasonable approximation the uncertainty in the lateral directions is the same as the uncertainty in the normal direction, u(F L) = u(F N) = u(F). In addition, the magnitude of the lateral forces during clockwise and counterclockwise rotations are approximately equal, \( \left| {F_{{\rm L_{\rm cw} }} } \right| = \left| {F_{{\rm L_{\rm ccw} }} } \right| = \left| {F_{L} } \right| \). Hence,

$$ u(\mu )^{2} = \left( {2\left( {{\frac{1}{{2F_{\rm N} }}}} \right)^{2} + \left( {{\frac{{F_{\rm L} }}{{F_{\rm N}^{2} }}}} \right)^{2} } \right)u\left( F \right)^{2} $$
(2)

Upon simplification, and a substitution for the lateral force magnitude (F L = μF N), Eq. 2 can be simplified to give Eq. 3:

$$ u(\mu )^{2} = {\frac{{1 + 2\mu^{2} }}{{2F_{\rm N}^{2} }}}u\left( F \right)^{2} $$
(3)

Solving for uncertainty in the average friction coefficient is compactly given by Eq. 4. For low-friction materials, the uncertainty in friction coefficient is given by Eq. 5.

$$ u(\mu ) = {\frac{u\left( F \right)}{{F_{\rm N} }}}\sqrt {\frac{1}{2} + \mu^{2} } $$
(4)
$$ u(\mu ) \approx {\frac{u\left( F \right)}{{\sqrt 2 F_{\rm N} }}} $$
(5)

For the experimental design and instrumentation used on this tribometer embodiment, the uncertainty in forces was u(F) = 15 mN, and the normal load was nominally F N = 1 N. Thus, the uncertainty in friction coefficient is not better than u(μ) = 0.01. This is a reasonable result and achievement considering design constraints placed on the hardware, but, as others have demonstrated in UHV, it is certainly possible to have lower uncertainties in friction coefficient [18, 3740].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krick, B.A., Sawyer, W.G. Space Tribometers: Design for Exposed Experiments on Orbit. Tribol Lett 41, 303–311 (2011). https://doi.org/10.1007/s11249-010-9689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9689-y

Keywords

Navigation