Skip to main content
Log in

Disk Lubricants for Spontaneous Adsorption and Grafting to Carbon Overcoat by UV Irradiation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A molecular orbital study was performed to elucidate the π–π charge transfer interaction between perfluoropolyether (PFPE) lubricants possessing phenylic end-groups and the carbon overcoat of magnetic hard disks. It is revealed that the phenylic unit and the graphitic segment of the carbon attract each other leading to spontaneous adsorption. The strength of this interaction increases in the order of: an unsubstituted phenyl group < a phenoxy unit < a p-methoxy-phenoxy unit. A molecular dynamics calculation revealed that alkyl-phenyl ether, on capture of an electron, would dissociate to yield the phenoxide anion and the alkyl radical. It is thus predicted that PFPE lubricants with an end-group possessing a phenoxy unit would spontaneously adsorb on the carbon overcoat, and that irradiation of disks coated with such lubricant with short UV (185 nm), thus generating photo-electrons, would result in facile detachment of phenoxy groups and grafting of PFPE molecular chains to the carbon surface at the chain terminus. Four new PFPE lubricants, Z-SA1 and Z-SA2 based on the Fomblin Z type backbone, and D-SA1 and D-SA2 based on the Demnum backbone were synthesized, where SA1 and SA2 indicate end-groups possessing a phenoxy unit and a p-methoxy-pheoxy unit at the ω-position, respectively. Disks coated with these lubricants were tested for (1) spin-off rate, (2) diffusion over the disk surface, (3) facility for photo-grafting by UV, (4) water contact angle (before and after UV exposure), (5) the catalytic degradation, and (6) the on-track time-to-failure test. A TOF-SIMS study of disks coated with D-SA1 and D-SA2 was performed to elucidate the disposition of lubricant molecular chains due to spontaneous adsorption and the effect of UV irradiation. All the experimental results were found to be in good accord with predictions given by the molecular orbital study. In the time-to-failure test, disks coated with Z-tetraol, Z-SA1, and Z-SA2 were compared. The durability was found to increase in the order of Z-tetraol < Z-SA1 < Z-SA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kasai, P.H., Wakabayashi, A.: Grafting lubricant molecular chains to the carbon overcoat. Tribol. Lett. 31, 17–23 (2008)

    Article  CAS  Google Scholar 

  2. Kasai, P.H., Wakabayashi, A.: Disk lubricant additives, A20H and C2: characteristics and chemistry in the disk environment. Tribol. Lett. 31, 25–35 (2008)

    Article  CAS  Google Scholar 

  3. Roberts, J.D., Caserio, M.C.: Basic Principles of Organic Chemistry, 2nd edn, p. 875. W.A. Benjamin, New York (1977)

    Google Scholar 

  4. Dewar, M.J.S., Hashmall, J.A., Trinajstic, N.: Ground states of conjugated molecules. XXII. Polarographic reduction potential of hydrocarbons. J. Am. Chem. Soc. 92, 5555–5559 (1970)

    Article  CAS  Google Scholar 

  5. Kasai, P.H.: Perfluoropolyethers: intramolecular disproportionation. Macromolecules 25, 6791–6799 (1992)

    Article  CAS  ADS  Google Scholar 

  6. Kasai, P.H.: Degradation of perfluoropolyethers and role of X1P additives in disk files. J. Info. Storage Proc. Syst. 1, 23–31 (1999)

    Google Scholar 

  7. Programs implemented in HyperChem. Release 7.51, Hypercube, Inc. Gainesville, FL (2003)

  8. Kasai, P.H.: Z-dol and carbon overcoat: the bonding mechanism. Tribol. Lett. 26, 93–101 (2007)

    Article  CAS  ADS  Google Scholar 

  9. Chiba, H., Musashi, T., Kasamatsu, Y., Watanabe, J., Watanabe, T., Watanabe, K.: Chemically modified air-bearing surface for the near contact regime. IEEE Trans. Magn. 41, 3049–3051 (2005)

    Article  CAS  ADS  Google Scholar 

  10. Kasai, P.H., Wakabayashi, A. The head/disk interaction at near contact regime. In: World Tribology Congress 2009, Kyoto, paper B1-412

Download references

Acknowledgments

The authors are greatly indebted to Mr. T. Kimura and Mr. Y. Nishiyama of Nidec Nagano Technical Center, Iijima-machi, Nagano, Japan; they graciously obtained the TOF-SIMS data presented here and assisted us in their analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Kasai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasai, P.H., Wakabayashi, A. Disk Lubricants for Spontaneous Adsorption and Grafting to Carbon Overcoat by UV Irradiation. Tribol Lett 38, 241–251 (2010). https://doi.org/10.1007/s11249-010-9598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9598-0

Keywords

Navigation