Skip to main content
Log in

Z-dol and carbon overcoat: the bonding mechanism

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molecular dispositions of Z-dol (linear perfluoropolyether with hydroxyl termini, –O–CF2–CH2–OH) applied over the carbon overcoat of magnetic hard disks are often depicted by an arrangement based on the hydrogen bonding interaction between the hydroxyl ends and some polar units of the carbon surface. The hydrogen bonding interaction is weak. The arrangement based on this mechanism is attained rapidly, but is slowly replaced (if partially) by a bona fide chemical bond. The issue of the exact nature of this chemical bond has been left unanswered in most of the reports. Past works deemed to have explored and elucidated the identity of the bond in question are gathered, reviewed and deductively presented. The review, we believe, clearly shows that the bonding in question involves (1) dangling bonds shielded within the sputter-deposited carbon, (2) transfer of the hydrogen atom of the hydroxyl unit of Z-dol to the dangling bond site, and (3) attachment of the remaining alkoxy system, Z–O–CF2–CH2–O•, to the carbon surface as a pendant ether unit. The Z-dol moiety thus attached is held by a bona fide chemical bond, and cannot be replaced by water molecules nor removed by solvent extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Similar content being viewed by others

References

  1. See, for example, M.S. John, S. Izumisawa, Q. Guo, D.M. Philips and Y.T. Hsia, IEEE Trans. Mag. 39 (2003) 754

  2. See, for example, R.J. Waltman, D. Pocker and G. Tyndall, Tribo. Lett. 4 (1998) 267

  3. See, for example, G.W. Tyndall, P.B. Leezenberg, R.J. Waltman and J. Castenada, Tribol. Lett. 4 (1998) 103

  4. Karis T.E. (2000) J. Colloid Interface Sci 225:196

    Article  CAS  Google Scholar 

  5. See, for example, G.W. Tyndall, T.E. Karis and M.S. John, Tribol. T. 42 (1999) 463

  6. Ma X., Gui J., Smoliar L., Grannen K., B. Marchon., John M.S., Bauer C.L. (1999) J. Chem. Phys. 110:3129

    Article  CAS  Google Scholar 

  7. Tagawa N., Tateyama T., Mori A., Kobayashi N., Fujii Y., Ikegami M. (2004) J. Tribol. 126:751

    Article  CAS  Google Scholar 

  8. Yanagisawa M. (2001) Jpn. J. Appl. Phys. 40:761

    Article  CAS  Google Scholar 

  9. Rühe J., Blackman G., Novotony V.N., Clarke T., Street G.B., Kuan S. (1993) J. Appl. Polym. Sci. 53:825

    Article  Google Scholar 

  10. Kasai P.H., Spiese C. (2004) Tribol. Lett. 17:823

    Article  CAS  Google Scholar 

  11. Tyndall G.W., Waltman R.J., Pocker D.J. (1998) Langmuir 14:7527

    Article  CAS  Google Scholar 

  12. Q. Dai and P.H. Kasai, unpublished results

  13. M. Yanagisawa STLE SP–36 (1994) 25

  14. Kasai P.H., Wass A., Yen B.K. (1999) J. Info. Storage Proce. Syst. 1:245

    Google Scholar 

  15. Kasai P.H. (2002) Tribol. Lett. 13:155

    Article  CAS  Google Scholar 

  16. See, for example, M.E. Best, P.H. Kasai, Macromolecules 22 (1989) 2622

  17. Koidel P., Wild Ch., Disher B., Wagner J., Ramsteriner M. (1989) Mater. Sci. Forum 52 & 53:41

    Google Scholar 

  18. Tsai H., Bogy D.B. (1987) J. Vac. Sci. Technol. A5:3287

    Google Scholar 

  19. Marchon B., Salmeron M. (1989) Phys. Rev. B39:12907

    Google Scholar 

  20. B. DeKoven, private communication

  21. Spool A.M., Kasai P.H. (1996) Macromolecules 29:1691

    Article  CAS  Google Scholar 

  22. Kasai P.H., Spool A.M. (1998) J. Phys. Chem. 102:7331

    CAS  Google Scholar 

  23. Kasai P.H., Spool A.M. (2001) IEEE Trans. Magnetics 37:929

    Article  CAS  Google Scholar 

  24. Waltman R.J., Shieh M.G. (2001) Macromolecules 34:6776

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. M. Yanagisawa, Dr. Tom Karis, and Dr. N. Tagawa for their kind permissions to use their figures and Dr. B. DeKoven for his permission to present the result of vacuum deposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Kasai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasai, P.H. Z-dol and carbon overcoat: the bonding mechanism. Tribol Lett 26, 93–101 (2007). https://doi.org/10.1007/s11249-006-9056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9056-1

Navigation