Skip to main content
Log in

Mechanics of Deformation under Traction and Friction of a Micrometric Monolithic MoS2 Particle in Comparison with those of an Agglomerate of Nanometric MoS2 Particles

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribology of small inorganic nanoparticles in suspension in a liquid lubricant is often impaired because these particles agglomerate even when organic dispersants are used. In this paper we use lateral force microscopy to study the deformation mechanism and dissipation under traction of two extreme configurations (1) a large MoS2 particle (~20 μm width) of about 1 μm height and (2) an agglomerate (~20 μm width), constituting 50 nm MoS2 crystallites, of about 1 μm height. The agglomerate records a friction coefficient which is about 5–7 times that of monolithic particle. The paper examines the mechanisms of material removal for both the particles using continuum modeling and microscopy and infers that while the agglomerate response to traction can be accounted for by the bulk mechanical properties of the material, intralayer and interlayer basal planar slips determine the friction and wear of monolithic particles. The results provide a rationale for selection of layered particles, for suspension in liquid lubricants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part II. Oxford University Press, London (1964)

    Google Scholar 

  2. Bhushan, B., Gupta, B.K.: Handbook of Tribology. McGraw-Hill, New York (1991)

    Google Scholar 

  3. Black, A.L., Dunster, R.W., Sanders, J.V.: Comparative study of surface deposits and behavior of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear 13, 119–132 (1969)

    Article  CAS  Google Scholar 

  4. Gansheimerand, J., Holinsky, R.: A study of solid lubricants in oils and greases under boundary conditions. Wear 19, 439–449 (1972)

    Article  Google Scholar 

  5. Bell, M.E., Findlay, J.H.: Molydenite as a new lubricant. Phys. Rev. 59, 922–927 (1941)

    CAS  Google Scholar 

  6. Braithwaite, E.R., Rowe, G.W.: Principles and applications of lubrication with solids. Sci. Lubr. 15, 92–96 (1957)

    Google Scholar 

  7. Winer, W.O.: Molybdenum disulphide as a lubricant: A review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  CAS  Google Scholar 

  8. Spalvins, T.: Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17–24 (1982)

    Article  CAS  ADS  Google Scholar 

  9. Holinski, R., Gansheimer, J.: A study of the lubricating mechanism of molybdenum disulphide. Wear 19, 329–342 (1972)

    Article  CAS  Google Scholar 

  10. Buck, V.: Morphological properties of sputtered MoS2 films. Wear 91, 281–288 (1983)

    Article  CAS  Google Scholar 

  11. Fleischauer, P.D., Tolentino, L.U.: Effects of crystallite orientation on the environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984)

    CAS  Google Scholar 

  12. Roberts, E.W.: Thin solid lubricants in space. Tribol. Int. 23, 95–105 (1990)

    Article  CAS  Google Scholar 

  13. Miyoshi, K., Honecy, F.S., Abel, P.B., Pepper, S.V., Spalvins, T., Wheeler, D.R.: A vacuum (10–9 Torr) friction apparatus for determining friction and endurance like that of MoSx films. Tribol. Trans. 36, 351–358 (1993)

    Article  CAS  Google Scholar 

  14. Suzuki, M.: Comparison of tribological characteristics of sputtered MoS2 films coated with different apparatus. Wear 218, 110–118 (1998)

    Article  CAS  Google Scholar 

  15. Wang, D.Y., Chang, C.L., Chen, Z.Y., Ho, W.Y.: Microstructural characterization of MoS2-Ti composite solid lubricating films. Surf. Coat. Technol. 121, 629–635 (1997)

    Article  Google Scholar 

  16. Killeffer, D.H., Linz, D.: Molybdenum Compounds: Their Chemistry and Technology. Wiley Interscience, New York (1952)

    Google Scholar 

  17. Bowden, F.P., Tabor, D.: Friction: An Introduction to Tribology, vol. 91. Anchor, Garden City, New York (1973)

    Google Scholar 

  18. Singer I.L.: In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes. Kluwer, Dordrecht (1992)

  19. Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923)

    Article  CAS  Google Scholar 

  20. Bragg, W.: The investigation of the properties of thin films by means of X-rays. Nature 115, 266–269 (1925)

    Article  ADS  Google Scholar 

  21. Rapoport, L., Bilik, Yu., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    Article  CAS  ADS  Google Scholar 

  22. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, S.R., Solan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229, 975–982 (1999)

    Article  Google Scholar 

  23. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  CAS  ADS  Google Scholar 

  24. Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)

    Article  ADS  Google Scholar 

  26. Sahoo, R.R., Biswas, S.K. to be communicated

  27. Gubarevich, A.V., Usuba, S., Kakudate, Y., Tanaka, A., Odawara, O.: Diamond powders less than 100 nm in diameter as effective solid lubricants in vacuum. Jpn. J. Appl. Phys. II 43, L920–L923 (2004)

    Article  CAS  ADS  Google Scholar 

  28. Shafiei, M., Alpas, A.T.: Friction and wear mechanisms of nanocrystalline nickel in ambient and inert atmospheres. Metall. Mater. Trans. A 38, 1621–1631 (2007)

    Article  Google Scholar 

  29. Gubarevich, A.V., Usuba, S., Kakudate, Y., Tanaka, A., Odawara, O.: Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate. Diam. Relat. Mater. 14, 1549–1555 (2005)

    Article  Google Scholar 

  30. Moshkovith, A., Perfiliev, V., Lapsker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: Effect of agglomeration. Tribol. Lett. 24, 225–228 (2006)

    Article  CAS  Google Scholar 

  31. Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12, 4486–4491 (1996)

    Article  CAS  Google Scholar 

  32. Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1, 59–66 (1995)

    Article  CAS  Google Scholar 

  33. Wahl, K.J., Belin, M., Singer, I.L.: A triboscopic investigation of the wear and friction of MoS2 in a reciprocating sliding contact. Wear 214, 212–220 (1998)

    Article  CAS  Google Scholar 

  34. Devaprakasam, D., Khatri, O.P., Shankar, N., Biswas, S.K.: Boundary lubrication additives for aluminium: a journey from nano to macrotribology. Tribol. Int. 38, 1022–1034 (2005)

    Article  CAS  Google Scholar 

  35. Green, C.P., Lioe, H., Cleveland, J.P., Proksch, P., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)

    Article  CAS  ADS  Google Scholar 

  36. Cleveland, J.P., Manne, S., Bocek, D., Hansma, P.K.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–404 (1993)

    Article  CAS  ADS  Google Scholar 

  37. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  CAS  ADS  Google Scholar 

  38. Ma, S., Wang, X., Xing, Y., Zhang, X., Xu, K., Teer, D.G.: Microstructure and mechanical properties of MoS2/titanium composite coatings with different titanium content. Surf. Coat. Technol. 201, 5290–5295 (2007)

    Article  Google Scholar 

  39. Watanabe, S., Noshiro, J., Miyake, S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)

    Article  CAS  Google Scholar 

  40. Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springler-Verlag, Berlin, Germany (2000)

    MATH  Google Scholar 

  41. Briscoe, B.J., Biswas, S.K., Sinha, S.K., Panesar, S.S.: The scratch hardness and friction of a soft rigid-plastic solid. Tribol. Int. 26, 183–193 (1993)

    Article  Google Scholar 

  42. Scharf, T.W., Prasad, S.V., Dugger, M.T., Kotula, P.G., Goeke, R.S., Grubbs, R.K.: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater. 54, 4731–4743 (2006)

    Article  CAS  Google Scholar 

  43. Simha, K.R.Y.: Fracture Mechanics for Modern Engineering Design. Universities Press, Hyderabad, India (2001)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hindustan Petroleum Corporation Limited (HPCL), Mumbai, India for their support in carrying out this work. Our sincere thanks to Ms. P. Savitha for the help in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Biswas.

Appendix: Calculation of Mode II Stress Intensity Factor

Appendix: Calculation of Mode II Stress Intensity Factor

We model a particle being scratched by a conical indenter of β half cone angle under a normal load P (Fig. 12) we assume that slip occurs in a direction parallel to the scratch direction, as a mode II fracture. We situate a crack of length ‘2c’ in the slip plane at a variable depth δ and determine the δ* where K II = K IIc. Noting that there is a compressive stress σz which is a monotonic function of the normal load which decays in moving normally, and which acts normal to the crack length, we expect δ* to vary as a function of normal load.

Fig. 12
figure 12

Configuration of a ‘2c’ length elliptical crack in the particle bulk

We have estimated K II for sliding of the layers under both compressive and shear stress assuming a pre existing flaw of 0.1 μm at the interface. The stress intensity factor is calculated assuming the pre-existing crack is under a pure shear (σ = 0) and the interfacial shear strength of MoS2 = 25 MPa [42].

For a conical indenter, Normal stress is given by,

$$ \sigma_{\text{z}} = - {\frac{{p_{\text{m}} }}{2}}\left[1n\left(1 + {\frac{1}{{\zeta^{2} }}}\right) + {\frac{2}{{1 + \zeta^{2} }}}\right] $$
(21)

where, p m and \( \zeta \) are defined in Eqs. 6 and 8, respectively.

Let us assume a crack of length ‘2c’ at the interface of two layers under the action of a uniform normal compressive stress σz and a uniform shear stress τ. The mode II stress intensity factor, K II, for propagation of this crack can be written [43]

$$ K_{\text{II}} = {\frac{1}{{\sqrt {\pi c} }}}\left[{\frac{\pi }{2}}\tau c - {\frac{k - 1}{k + 1}}\sigma_{\text{z}} c\right] $$
(22)

where, (a) k = 3 − 4 v, for plane strain and (b) k = (3 − v)/(1 + v), for plane stress.

Figure 13 shows that, with increase in normal load, we can shear more material from peak of the particle, where K II becomes equal to K IIC. However, the figure gives only a qualitative estimate of the stress intensity factors and this validates the experimental finding of material removal qualitatively (Fig. 5).

Fig. 13
figure 13

KII as a function of depth at different loads. KII reaches KIIC (dotted line) at a much higher depth as the normal load is increased. Inset: Theoretical graph showing the depth of material for KII = KIIC as a function of normal load

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, R.R., Math, S. & Biswas, S.K. Mechanics of Deformation under Traction and Friction of a Micrometric Monolithic MoS2 Particle in Comparison with those of an Agglomerate of Nanometric MoS2 Particles. Tribol Lett 37, 239–249 (2010). https://doi.org/10.1007/s11249-009-9504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9504-9

Keywords

Navigation