Skip to main content
Log in

Stress Analysis on Layered Materials in Point Elastohydrodynamic-Lubricated Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

For multilayered or coated substrates in elastohydrodynamic-lubricated (EHL) contacts, the subsurface stress distributions under a normal load combined with shear traction have been analyzed in this article through computer simulations. The Papkovich-Neuber potentials and Fourier transform are adopted to deduce the pressure–displacement, pressure–stress, and shear traction–stress response functions in frequency domain for the coated substrates, and to calculate distributions of pressure and subsurface stress. The results from the analysis of EHL contacts on coated substrates are compared with those from dry contact model in which shear traction is assumed to obey Coulomb’s law. Effects of the Young’s modulus of coatings, the properties of lubricants, and the magnitude of traction are discussed. Similar to the results in dry contacts, hard coatings in lubricated cases tend to increase the von Mises stress, whereas soft coatings decrease the stress. Shear traction makes the max von Mises stress increasing and moving closer to surface. However, the changes in subsurface stress due to shear traction are less obvious in lubricated contacts. Comparison between EHL and dry contact models reveals that lubrication can reduce the von Mises stress in the coating layer due to smaller shear traction. The analyses show that pressure, film thickness, and subsurface stress distributions are influenced by surface coatings, sliding velocity, rheological models, and pressure–viscosity behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Hertzian contact radius (mm)

\( \tilde{C}_{p}^{{u_{z}^{\left( 1 \right)} }} \) :

The frequency response function of pressure–displacement in frequency domain

\( \tilde{C}_{p}^{{{\varvec{\upsigma}}^{\left( k \right)} }} \) :

The frequency response functions of pressure–stress in frequency domain

\( \tilde{C}_{q}^{{{\varvec{\upsigma}}^{\left( k \right)} }} \) :

The frequency response functions of shear traction–stress in frequency domain

E 1 :

Young’s modulus for the coating (GPa)

E 2 :

Young’s modulus for the substrate (GPa)

G 1 :

Shear modulus for the coating (GPa)

G 2 :

Shear modulus for the substrate (GPa)

h :

Coating thickness (mm)

h f :

Oil film thickness (mm)

h 0 :

Body separation between two surfaces (mm)

h s :

Original geometry of contacting bodies (mm)

J 2 :

The second invariant of the deviatoric stress tensor (MPa)

\( \sqrt {J_{2} } \) :

The von Mises stress (MPa)

m, n:

Frequency domain correspond to x, y, respectively

p :

Pressure (MPa)

q :

Shear traction (MPa)

p h :

Maximum Hertzian pressure (MPa)

R :

Ball radius (mm)

u x , u y , u z :

Displacements of three directions (mm)

U :

Surface velocity (mm/s)

V :

Surface deformation (mm)

w :

Applied load (N)

x, y, z:

Space coordinates (mm)

α:

Pressure–viscosity coefficient (GPa−1)

γS :

Pressure coefficient corresponding to the friction coefficient in boundary lubrication

\( \dot{\gamma } \) :

Shear strain rate of lubricant film (s−1)

γL :

The pressure coefficient

δ1, δ2 :

The roughness amplitudes of surface 1 and 2, respectively (mm)

δ ij :

Kronecker delta

η:

Viscosity (Pa s)

η0 :

Viscosity at normal temperature and pressure (Pa s)

ν1 :

Poisson’s ratio of the coating

ν2 :

Poisson’s ratio of the substrate

ρ:

Lubricant’s density (kg/m3)

ρ0 :

Lubricant’s density at normal temperature and pressure (kg/m3)

σ ij :

Stress (MPa)

τc :

Shear stress of boundary film (MPa)

τS0 :

Initial shear strength of boundary film (MPa)

τl :

Shear stress of lubricant film (MPa)

τL :

Limiting shear stress of lubricant film (MPa)

τL0 :

Initial limiting shear stress (MPa)

τmax :

Maximum shear stress (MPa)

ϕ, ψ1, ψ2, ψ3 :

Papkovich-Neuber potentials

Tilde(~) or FT:

The Fourier transform

IFFT:

The inverse discrete Fourier transform

k = 1, 2:

Means in the coating and substrate, respectively

References

  1. Burmister, D.M.: The general theory of stresses and displacement in layered system. J. Appl. Phys. 16, 89–94 (1945). doi:10.1063/1.1707558

    Article  ADS  Google Scholar 

  2. Hannah, M.: Contact stress and deformation in a thin elastic layer. J. Mech. Appl. Math. 4, 94–105 (1951). doi:10.1093/qjmam/4.1.94

    Article  MATH  Google Scholar 

  3. Meijers, P.: The contact problem of a rigid cylinder on an elastic layer. Appl. Sci. Res. 18, 353–382 (1968). doi:10.1007/BF00382359

    Article  Google Scholar 

  4. O’Sullivan, T.C., King, R.B.: Sliding contact stress field due to a spherical indenter on a layered elastic half-space. ASME J. Tribol. 110(2), 235–240 (1988)

    Google Scholar 

  5. Nogi, T., Kato, T.: Influence of a hard surface layer on the limit of elastic contact, Part I: analysis using a real surface model. ASME J. Tribol. 119(3), 493–500 (1997). doi:10.1115/1.2833525

    Article  CAS  Google Scholar 

  6. Bhushan, B., Peng, W.: Contact mechanics of multilayered rough surface. Appl. Mech. Rev. 55(5), 435–480 (2002). doi:10.1115/1.1488931

    Article  Google Scholar 

  7. Bennett, A., Higginson, G.R.: Hydrodynamic lubrication of soft solids. J. Mech. Eng. Sci. 12(3), 218–222 (1970). doi:10.1243/JMES_JOUR_1970_012_037_02

    Article  Google Scholar 

  8. Elsharkawy, A.A., Hamrock, B.J.: EHL of coated surfaces, Part I—Newtonian results. ASME J. Tribol. 116(1), 29–36 (1994). doi:10.1115/1.2927041

    Article  CAS  Google Scholar 

  9. Elsharkawy, A.A., Hamrock, B.J.: EHL of coated surfaces, Part II—non-Newtonian results. ASME J. Tribol. 116(4), 786–793 (1994). doi:10.1115/1.2927333

    Article  CAS  Google Scholar 

  10. Elsharkawy, A.A., Holmes, M.J.A., Evans, H.P., Snidle, R.W.: Microelastohydrodynamic lubrication of coated cylinders using coupled differential deflection method. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 220(1), 29–41 (2006). doi:10.1243/13506501J10005

    Article  Google Scholar 

  11. Bohan, M.F.J., Lim, C.H., Korochkina, T.V., Claypole, T.C., Gethin, D.T., Roylance, B.J.: An investigation of the hydrodynamic and mechanical behaviour of a soft nip rolling contact. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 221(1), 37–49 (1997). doi:10.1243/1350650971542309

    Article  Google Scholar 

  12. Xue, Y.K., Gethin, D.T., Lim, C.H.: Elastohydrodynamic lubrication analysis of layered line contact by the boundary element method. Int. J. Numer. Methods Eng. 39(15), 2531–2554 (1996). doi:10.1002/(SICI)1097-0207(19960815)39:15<2531::AID-NME965>3.0.CO;2-N

    Article  MATH  Google Scholar 

  13. Goryacheva, I., Sadeghi, F., Xu, G.: Viscoelastic effects in lubricated contacts. Wear 198, 307–312 (1996). doi:10.1016/0043-1648(96)07206-7

    Article  CAS  Google Scholar 

  14. Jin, Z.M.: Elastohydrodynamic lubrication of a circular point contact for a compliant layered surfaces bonded to a rigid substrate, Part 1: theoretical formulation and numerical method. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 214(3), 267–279 (2000). doi:10.1243/1350650001543160

    Article  Google Scholar 

  15. Jin, Z.M.: Elastohydrodynamic lubrication of a circular point contact for a compliant layered surfaces bonded to a rigid substrate, Part 2: numerical results. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 214(3), 281–289 (2000). doi:10.1243/1350650001543179

    Article  Google Scholar 

  16. Harris, T.A.: Rolling Bearing Analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  17. Liu, L.C., Chen, W.W., Zhu, D., Liu, S.B., Wang, Q.: An elastohydrodynamic lubrication model for coated surfaces in point contacts. ASME J. Tribol. 129(4), 509–516 (2007). doi:10.1115/1.2736433

    Article  Google Scholar 

  18. Fujinoa, T., Iwamotob, K., Tanakab, K., Shima, M.: Stress distribution of coated film with a range of coated film thickness and elastic properties under a single EHL operating condition. Tribol. Int. 40(10–12), 1638–1648 (2007). doi:10.1016/j.triboint.2007.02.012

    Article  CAS  Google Scholar 

  19. Stewart, S., Ahmed, R.: Rolling contact fatigue of surface coatings—a review. Wear 253(11-12), 1132–1144 (2002). doi:10.1016/S0043-1648(02)00234-X

    Article  CAS  Google Scholar 

  20. Michalczewski, R., Piekoszewski, W., Szczerek, M., Tuszynski, W.: The lubricant-coating interaction in rolling and sliding contacts. Tribol. Int. 42(4), 554–560 (2009). doi:10.1016/j.triboint.2008.05.001

    Article  CAS  Google Scholar 

  21. Evans, R.D., Cogdell, J.D., Richter, G.A., Doll, G.L.: Traction of lubricated rolling contacts between thin-film coatings and steel. STLE Tribol. Trans. 52(1), 106–113 (2009). doi:10.1080/10402000802180144

    Article  CAS  Google Scholar 

  22. Bair, S., Winer, W.O.: A rheological model for elastohydrodynamic contacts based on primary laboratory data. ASME J. Lubric. Technol. 101(3), 258–265 (1979)

    Google Scholar 

  23. Lee, R.T., Hamrock, B.J.: A circular non-newtonian fluid model, Part I—used in elastohydrodynamic lubrication. ASME J. Tribol. 112(3), 486–496 (1990). doi:10.1115/1.2920285

    Article  Google Scholar 

  24. Gecim, B., Winer, W.O.: Lubricant limiting shear-stress effect on EHD film thickness. ASME J. Lubric. Technol. 102(2), 213–221 (1980)

    Article  ADS  Google Scholar 

  25. Iivonen, H., Hamrock, B.J.: New non-Newtonian fluid model for elastohydrodynamic lubrication of rectangular contacts. Wear 143(2), 297–305 (1991). doi:10.1016/0043-1648(91)90103-2

    Article  Google Scholar 

  26. Wang, W.Z., Wang, S., Shi, F.H., Wang, Y.C., Chen, H.B., Wang, H., Hu, Y.Z.: Simulations and measurements of sliding friction between rough surfaces in point contacts: from EHL to boundary lubrication. ASME. J. Tribol. 129(3), 495–501 (2006). doi:10.1115/1.2736432

    Article  Google Scholar 

  27. Pettersson, U., Jacobson, S.: Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 17(3), 553–559 (2004). doi:10.1023/B:TRIL.0000044504.76164.4e

    Article  CAS  Google Scholar 

  28. Svahn, F., Rudolphi, A.K., Hogmark, S.: On the effect of surface topography and humidity on lubricated running-in of a carbon based coating. Wear 261(11-12), 1237–1246 (2006). doi:10.1016/j.wear.2006.03.012

    Article  CAS  Google Scholar 

  29. Alanou, M.P., Evans, H.P., Snidle, R.W.: Effect of different surface treatments and coatings on the scuffing performance of hardened steel discs at very high sliding speeds. Tribol. Int. 37(2), 93–102 (2004). doi:10.1016/S0301-679X(03)00039-2

    Article  CAS  Google Scholar 

  30. Hu, Y.Z., Zhu, D.: A full numerical solution to the mixed lubrication in point contacts. ASME J. Tribol. 122(1), 1–9 (2000). doi:10.1115/1.555322

    Article  MathSciNet  Google Scholar 

  31. Liu, S.B., Wang, Q., Liu, G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243(1–2), 101–110 (2000). doi:10.1016/S0043-1648(00)00427-0

    Article  CAS  Google Scholar 

  32. Dowson, D., Higginson, G.R.: Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication. Pergamon, Oxford (1966)

    Google Scholar 

  33. Houpert, L., Flamand, L., Berthe, D.: Rheological and thermal effects in lubricated E.H.D. contacts. ASME J. Lubric. Technol. 103(4), 526–532 (1981)

    Google Scholar 

  34. Stahl, J., Jacobson, B.O.: A lubricant model considering wall-slip in EHL line contacts. ASME J. Tribol. 125(3), 523–532 (2003). doi:10.1115/1.1537750

    Article  Google Scholar 

  35. Rabinowicz, E.: Friction especially low friction. In: Suh, N.P., Saka, N. (eds.) Proceedings of the International Conference on the Fundamentals of Tribology, pp. 351–364. MIT Press, Cambridge, MA (1980)

  36. Hoglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232(2), 176–184 (1999). doi:10.1016/S0043-1648(99)00143-X

    Article  CAS  Google Scholar 

  37. Wang, S., Hu, Y.Z., Wang, W.Z., Wang, H.: Transition of frictional states and surface roughness effects in lubricated contacts. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 222(3), 407–414 (2008). doi:10.1243/13506501JET346

    Article  Google Scholar 

  38. Ahmed, A., Hadfield, M.: Failure modes of plasma sprayed WC–15%CO coated rolling elements. Wear 230(1), 35–39 (1999). doi:10.1016/S0043-1648(99)00083-6

    Article  Google Scholar 

  39. Dahm, K.L., Torskaya, E., Goryacheva, I., Dearnley, P.A.: Tribological effects on subsurface interfaces. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 221(3), 345–353 (2007). doi:10.1243/13506501JET248

    Article  Google Scholar 

  40. Polonsky, I.A., Keer, L.M.: Stress analysis of layered elastic solids with cracks using the fast Fourier transform and conjugate gradient techniques. ASME J. Appl. Mech. 68(5), 708–714 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support of the National Basic Research Program of China (973 Program), under Grant No. 2006CB705403, and National Science Foundation of China, under Grant Nos. 50675111 and 50721004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-zhong Hu.

Appendix

Appendix

1.1 Response Functions for Stresses and Surface Normal Displacement in Layered Elastic Half-Space due to a Normal Traction

$$ \tilde{C}_{p}^{{u_{z}^{\left( 1 \right)} }} \left( {m,n,0} \right) = \frac{1}{{2G_{1} }}\left[ { - \alpha \left( {A^{\left( 1 \right)} - \bar{A}^{\left( 1 \right)} } \right) - \left( {3 - 4\nu_{1} } \right)\left( {C^{\left( 1 \right)} + \bar{C}^{\left( 1 \right)} } \right)} \right] $$

or

$$ \frac{{\nu_{1} - 1}}{{G_{1} }}\left( {1 + 4\alpha h\kappa \theta - \lambda \kappa \theta^{2} } \right)\alpha R $$
$$ \tilde{C}_{p}^{{\sigma_{xx}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - m^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\alpha \nu_{k} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} m^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right), $$
$$ \tilde{C}_{p}^{{\sigma_{yy}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - n^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\alpha \nu_{k} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} n^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right), $$
$$ \tilde{C}_{p}^{{\sigma_{zz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = \alpha^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\alpha \left( {1 - \nu_{k} } \right)\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} \alpha^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right), $$
$$ \tilde{C}_{p}^{{\sigma_{xy}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - mn\left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} mn\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right), $$
$$ \tilde{C}_{p}^{{\sigma_{xz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - i\left[ {m\alpha \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + m\left( {1 - 2\nu_{k} } \right)\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} m\alpha \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right)} \right], $$
$$ \tilde{C}_{p}^{{\sigma_{yz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - i\left[ {n\alpha \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + n\left( {1 - 2\nu_{k} } \right)\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} n\alpha \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right)} \right], $$

where G k is the Shear modulus and ν k is the Poisson’s ratio, k = 1 means in the coating, and k = 2 means in the substrate.

$$ G = \frac{{G_{1} }}{{G_{2} }},\quad \alpha = \sqrt {m^{2} + n^{2} } ,\quad \lambda = 1 - \frac{{4\left( {1 - \nu_{1} } \right)}}{{1 + G\left( {3 - 4\nu_{2} } \right)}},\quad \kappa = \frac{G - 1}{{G + 3 - 4\nu_{1} }},\quad \theta = e^{ - 2\alpha h} , $$
$$ R = - \frac{1}{{\left[ {1 - \left( {\lambda + \kappa + 4\kappa \alpha^{2} h^{2} } \right)\theta + \lambda \kappa \theta^{2} } \right]\alpha^{2} }}, $$
$$ A^{\left( 1 \right)} = R\left\{ { - \left( {1 - 2\nu_{1} } \right)\left[ {1 - \left( {1 - 2\alpha h} \right)\kappa \theta } \right] + \frac{1}{2}\left( {\kappa - \lambda - 4\kappa \alpha^{2} h^{2} } \right)\theta } \right\}, $$
$$ \bar{A}^{\left( 1 \right)} = R\theta \left\{ {\left( {1 - 2\nu_{1} } \right)\kappa \left( {1 + 2\alpha h - \lambda \theta } \right) + \frac{1}{2}\left( {\kappa - \lambda - 4\kappa \alpha^{2} h^{2} } \right)} \right\}, $$
$$ A^{\left( 2 \right)} = - \frac{1}{2}R\sqrt \theta \left\{ {\left( {3 - 4\nu_{2} } \right)\left( {1 - \lambda } \right)\left[ {1 - \left( {1 - 2\alpha h} \right)\kappa \theta } \right] + \left( {\kappa - 1} \right)\left( {1 + 2\alpha h - \lambda \theta } \right)} \right\}, $$
$$ \bar{A}^{\left( 2 \right)} = 0, $$
$$ \bar{C}^{\left( 2 \right)} = 0, $$
$$ C^{\left( 1 \right)} = \left[ {1 - \left( {1 - 2\alpha h} \right)\kappa \theta } \right]\alpha R, $$
$$ \bar{C}^{\left( 1 \right)} = \left( {1 + 2\alpha h - \lambda \theta } \right)\kappa \theta \alpha R, $$
$$ C^{\left( 2 \right)} = \left( {1 - \lambda } \right)\sqrt \theta C^{\left( 1 \right)} = \left[ {1 - \left( {1 - 2\alpha h} \right)\kappa \theta } \right]\left( {1 - \lambda } \right)\alpha R\sqrt \theta . $$

1.2 Response Functions for Stresses in Layered Elastic Half-Space due to a Tangential Traction

$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{xx}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - m^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\alpha \nu_{k} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} m^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) \hfill \\ + 2im\left( {\nu_{k} - 2} \right)\left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{B}^{\left( k \right)} e^{{\alpha z{}_{k}}} } \right) + im^{3} z_{k} \alpha^{ - 1} \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - im^{2} \left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} + \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$
$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{yy}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - n^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\alpha \nu_{k} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} n^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) \hfill \\ - 2im\nu_{k} \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + imn^{2} z_{k} \alpha^{ - 1} \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - in^{2} \left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} + \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$
$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{zz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = \alpha^{2} \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + 2\left( {1 - \nu_{k} } \right)\alpha \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} \alpha^{2} \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) \hfill \\ + 2im\left( {1 - \nu_{k} } \right)\left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - imz_{k} \alpha \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + i\alpha^{2} \left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} + \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$
$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{xy}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - mn\left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - z_{k} mn\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) \hfill \\ - 2imn\left( {1 - \nu_{k} } \right)\left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + im^{2} nz_{k} \alpha^{ - 1} \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) - imn\left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} + \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$
$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{xz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - i\left[ {m\alpha \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + m\left( {1 - 2\nu_{k} } \right)\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} m\alpha \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right)} \right] \hfill \\ - m^{2} z_{k} \left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + \left[ {2\alpha \left( {1 - \nu_{k} } \right) + m^{2} \alpha^{ - 1} } \right]\left( {B^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + m\alpha \left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} - \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$
$$ \begin{gathered} \tilde{C}_{q}^{{\sigma_{yz}^{\left( k \right)} }} \left( {m,n,z_{k} } \right) = - i\left[ {n\alpha \left( {A^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{A}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + n\left( {1 - 2\nu_{k} } \right)\left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} + \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right) + z_{k} n\alpha \left( {C^{\left( k \right)} e^{{ - \alpha z_{k} }} - \bar{C}^{\left( k \right)} e^{{\alpha z_{k} }} } \right)} \right] \hfill \\ + mn\left( {\alpha^{ - 1} - z_{k} } \right)B^{\left( k \right)} e^{{ - \alpha z_{k} }} - mn\left( {\alpha^{ - 1} + z_{k} } \right)\bar{B}^{\left( k \right)} e^{{\alpha z_{k} }} + n\alpha \left( {B_{,m}^{\left( 1 \right)} e^{{ - \alpha z_{k} }} - \bar{B}_{,m}^{\left( 1 \right)} e^{{\alpha z_{k} }} } \right), \hfill \\ \end{gathered} $$

where G k is the Shear modulus and ν k is the Poisson’s ratio, k = 1 means in the coating, and k = 2 means in the substrate.

$$ G = \frac{{G_{1} }}{{G_{2} }},\quad \alpha = \sqrt {m^{2} + n^{2} } ,\quad \lambda = 1 - \frac{{4\left( {1 - \nu_{1} } \right)}}{{1 + G\left( {3 - 4\nu_{2} } \right)}},\quad \kappa = \frac{G - 1}{{G + 3 - 4\nu_{1} }},\quad \theta = e^{ - 2\alpha h} , $$
$$ S_{0} = \left[ {G + \left( {3 - 4\nu_{1} } \right)} \right]\left( {1 - \kappa \theta } \right), $$
$$ \bar{B}^{\left( 1 \right)} = - \frac{{\left( {G - 1} \right)\theta }}{{\left( {1 + G} \right) + \left( {1 - G} \right)\theta }} \cdot \frac{1}{{2\alpha \left( {1 - \nu_{1} } \right)}}, $$
$$ B^{\left( 1 \right)} = \bar{B}^{\left( 1 \right)} - \frac{1}{{2\alpha \left( {1 - \nu_{1} } \right)}}, $$
$$ B^{\left( 2 \right)} = - \frac{{2\left( {1 - \nu_{1} } \right)}}{{1 - \nu_{2} }} \cdot \frac{\sqrt \theta }{{\left( {1 + G} \right) + \left( {1 - G} \right)\theta }} \cdot \frac{1}{{2\alpha \left( {1 - \nu_{1} } \right)}}, $$
$$ C^{\left( 1 \right)} = \left( {1 - \lambda } \right)S_{0} R_{c} /\left\{ {4\left( {1 - \nu_{1} } \right)\left( {G + 3 - 4\nu_{1} } \right)\left[ {1 - \left( {\lambda + \kappa + 4\kappa \alpha^{2} h^{2} } \right)\theta + \lambda \kappa \theta^{2} } \right]} \right\} $$
$$ \bar{C}^{\left( 1 \right)} = \left[ {2\left( {G - 1} \right)\alpha h\theta C^{\left( 1 \right)} + \theta R_{a} } \right]/S_{0} , $$
$$ A^{\left( 1 \right)} = \left[ { - \left( {3 - 4\nu_{1} } \right)C^{\left( 1 \right)} + \bar{C}^{\left( 1 \right)} + \alpha \left( {R_{1} + R_{2} } \right)} \right]/\left( {2\alpha } \right), $$
$$ \bar{A}^{\left( 1 \right)} = \left\{ {\left( {1 - \lambda } \right)\theta C^{\left( 1 \right)} + \left[ {\left( {3 - 4\nu_{1} } \right)\left( {1 - \theta } \right) - 2\alpha h} \right]\bar{C}^{\left( 1 \right)} + \theta R_{d} } \right\}/\left[ {2\alpha \left( {1 - \theta } \right)} \right], $$
$$ C^{\left( 2 \right)} = \left\{ {\left[ {4\left( {1 - \nu_{1} } \right)\left( {1 - \lambda } \right)\sqrt \theta } \right]C^{\left( 1 \right)} + \left( {1 - \lambda } \right)\alpha \sqrt \theta \left( {R_{3} - R_{4} + R_{5} - R_{6} } \right)} \right\}/\left[ {4\left( {1 - \nu_{1} } \right)} \right], $$
$$ A^{\left( 2 \right)} = \left\{ {2\alpha h\sqrt \theta \left[ {S_{0} - \left( {G - 1} \right)\left( {1 - \theta } \right)} \right]C^{\left( 1 \right)} - \left[ {\left( {3 - 4\nu_{2} } \right)S_{0} } \right]C^{\left( 2 \right)} + \alpha \sqrt \theta S_{0} \left( {R_{1} + R_{2} - R_{3} - R_{4} } \right) - \sqrt \theta \left( {1 - \theta } \right)R_{a} } \right\}/\left( {2\alpha S_{0} } \right), $$

where

$$ - \alpha^{2} R_{1} = im\left( {B^{\left( 1 \right)} - \bar{B}^{\left( 1 \right)} } \right) + i\alpha^{2} \left( {B_{,m}^{\left( 1 \right)} - \bar{B}_{,m}^{\left( 1 \right)} } \right), $$
$$ - \alpha^{2} R_{2} = 2im\left( {1 - \nu_{1} } \right)\left( {B^{\left( 1 \right)} + \bar{B}^{\left( 1 \right)} } \right) + i\alpha^{2} \left( {B_{,m}^{\left( 1 \right)} + \bar{B}_{,m}^{\left( 1 \right)} } \right), $$
$$ - \alpha^{2} R_{3} = i\left( {m - m\alpha h} \right)B^{\left( 1 \right)} - i\left( {m + m\alpha h} \right)\theta^{ - 1} \bar{B}^{\left( 1 \right)} - im\theta^{{ - \frac{1}{2}}} B^{\left( 2 \right)} + i\alpha^{2} B_{,m}^{\left( 1 \right)} - i\alpha^{2} \theta^{ - 1} \bar{B}_{,m}^{\left( 1 \right)} - i\alpha^{2} \theta^{{ - \frac{1}{2}}} B_{,m}^{\left( 2 \right)} , $$
$$ - \alpha^{2} R_{4} = \left[ {2i\left( {1 - \nu_{1} } \right)m - im\alpha h} \right]B^{\left( 1 \right)} + \left[ {2i\left( {1 - \nu_{1} } \right)m + im\alpha h} \right]\theta^{ - 1} \bar{B}^{\left( 1 \right)} - \left[ {2i\left( {1 - \nu_{2} } \right)m} \right]\theta^{{ - \frac{1}{2}}} B^{\left( 2 \right)} + i\alpha^{2} B_{,m}^{\left( 1 \right)} + i\alpha^{2} \theta^{ - 1} \bar{B}_{,m}^{\left( 1 \right)} - i\alpha^{2} \theta^{{ - \frac{1}{2}}} B_{,m}^{\left( 2 \right)} , $$
$$ - \alpha^{2} R_{5} = - im\alpha hB^{\left( 1 \right)} + im\alpha h\theta^{ - 1} \bar{B}^{\left( 1 \right)} + i\alpha^{2} B_{,m}^{\left( 1 \right)} + i\alpha^{2} \theta^{ - 1} \bar{B}_{,m}^{\left( 1 \right)} - iG\alpha^{2} \theta^{{ - \frac{1}{2}}} B_{,m}^{\left( 2 \right)} , $$
$$ - \alpha^{2} R_{6} = i\left( {m - m\alpha h} \right)B^{\left( 1 \right)} - i\left( {m + m\alpha h} \right)\theta^{ - 1} \bar{B}^{\left( 1 \right)} - iGm\theta^{{ - \frac{1}{2}}} B^{\left( 2 \right)} + i\alpha^{2} B_{,m}^{\left( 1 \right)} - i\alpha^{2} \theta^{ - 1} \bar{B}_{,m}^{\left( 1 \right)} - iG\alpha^{2} \theta^{{ - \frac{1}{2}}} B_{,m}^{\left( 2 \right)} , $$
$$ R_{a} = \left( {G - 1} \right)\alpha \left( {R_{1} + R_{2} } \right) - G\alpha \left( {R_{3} + R_{4} } \right) + \alpha \left( {R_{5} + R_{6} } \right), $$
$$ R_{b} = \alpha \left( {R_{2} - R_{1} } \right) + \alpha \theta \left( {R_{3} - R_{4} } \right), $$
$$ R_{c} = \frac{{4\left( {1 - \nu_{1} } \right)}}{1 - \lambda }\left( {\frac{2\alpha h\theta }{{S_{0} }}R_{a} + R_{b} } \right), $$
$$ R_{d} = \alpha \left( {R_{1} - R_{2} - R_{3} + R_{4} } \right) + \frac{{\left( {1 - \lambda } \right)\alpha }}{{4\left( {1 - \nu_{1} } \right)}}\left( {R_{3} - R_{4} + R_{5} - R_{6} } \right). $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Zj., Wang, Wz., Wang, H. et al. Stress Analysis on Layered Materials in Point Elastohydrodynamic-Lubricated Contacts. Tribol Lett 35, 229–244 (2009). https://doi.org/10.1007/s11249-009-9452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9452-4

Keywords

Navigation