Skip to main content
Log in

Occurrence of Wall Slip in Elastohydrodynamic Lubrication Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Preliminary experimental work has been carried out to identify some of the boundary slip phenomena of highly pressurised polybutenes in an elastohydrodynamic lubrication (EHL) conjunction. The movement of the oil is signified using an entrapment that can be readily formed by the impact of a steel ball against a layer of oil on a glass block in an optical EHL test apparatus. The post-impact lateral movement of the entrapment was investigated under the conditions: (i) pure rolling, (ii) pure glass block sliding (steel ball stationary) and (iii) pure ball sliding (glass block stationary). It was observed that under pure rolling the entrapped oil travels within the contact region at the entrainment speed, which is correlated with EHL theory. Under pure glass block sliding conditions, the speed of the entrapped oil core is less than the entrainment speed, and in the extreme cases, this core can be nearly stationary. Under pure ball sliding conditions, the oil core moves at a speed greater than the entrainment speed. The observation indicates that the oil/steel ball interface can sustain higher shear stress than the oil/glass (chromium coated) interface and there is a boundary slip in terms of relative sliding at the latter interface under the experimental conditions. Furthermore, the amount of slip increases with an increase in the pressure. These experiments provide evidence of the existence of wall slippage, which leads to the abnormal EHL film profile characterised with an inlet dimple as reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

d :

Displacement, μm.

h c :

The film thickness at the dimple core/the dimple depth defined as the maximum film thickness within the dimple, μm.

h minL :

Minimum film thickness at the inlet edge of the dimple along the central entrainment, μm.

h minR :

Minimum film thickness at the outlet edge of the dimple along the central entrainment, μm.

h o,c :

Initial dimple depth defined as the maximum film thickness within the dimple, μm.

ub, ug:

Speeds of the steel ball and the glass block, respectively, at the contact point, μm/s.

u c :

Dimple core (fringe centre) speed, μm/s.

u e :

Entrainment speed, μm/s, u e = (u b + u g)/2.

u s :

Relative speed of the oil to the glass surface at the interface, μm/s.

w :

Applied load, N.

References

  1. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, Inc, New York (1994)

    Google Scholar 

  2. Smith, F.W.: Lubricant behaviour in concentrated contact systems—the Castor oil-steel system. Wear 2(4), 260–263 (1959). doi:10.1016/0043-1648(59)90264-9

    Article  Google Scholar 

  3. Johnson, K.L., Tewaarwerk, J.L.: Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. Lond. A Math. Phys. Sci. 356, 215–236 (1977). doi:10.1098/rspa.1977.0129

    Article  MATH  CAS  ADS  Google Scholar 

  4. Jacobson, B.O.: Rheology and elastohydrodynamic lubrication. Tribology Series 19. Elsevier, Amsterdam (1991)

    Google Scholar 

  5. Bair, S., Winer, W.O.: Shear strength measurements of lubricant at high pressure. ASME J. Lubr. Technol. 101, 251–257 (1979)

    CAS  Google Scholar 

  6. Jacobson, B.O., Hamrock, B.J.: Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts. Trans. ASME. J. Tribol. 106, 275–284 (1984)

    Article  Google Scholar 

  7. Zhang, Y.B., Wen, S.: An analysis of elastohydrodynamic lubrication with limiting shear stress: Part I—theory and solutions. STLE Tribol. Trans. 45, 135–144 (2002). doi:10.1080/10402000208982532

    Article  CAS  Google Scholar 

  8. Stahl, J., Jacobson, B.O.: A lubricant model considering wall-slip in EHL line contacts. ASME J. Tribol. 125, 523–532 (2003). doi:10.1115/1.1537750

    Article  Google Scholar 

  9. Ehret, P., Dowson, D., Taylor, C.M.: On lubricant transport conditions in elastohydrodynamic conjunctions. Proc. R. Soc. Lond. A 454, 763–787 (1998)

    Article  MATH  CAS  ADS  Google Scholar 

  10. Lee, R.T., Hamrock, B.J.: A circular non-Newtonian fluid model: Part I–used in elastohydrodynamic lubrication. Trans. ASME J. Tribol. 112, 486–496 (1990). doi:10.1115/1.2920285

    Article  Google Scholar 

  11. Shieh, J., Hamrock, B.J.: Film collapse in EHL and micro-EHL. ASME J. Tribol. 113, 372–377 (1991). doi:10.1115/1.2920631

    Article  Google Scholar 

  12. Chiu, Y.P., Sibley, L.B.: Contact shape and non-Newtonian effects in elastohydrodynamic point contacts. ASLE Lubr. Eng. 28, 48–60 (1972)

    Google Scholar 

  13. Guo, F., Wong, P.L.: An anomalous elastohydrodynamic lubrication film-inlet dimple. ASME J. Tribol. 127, 425–434 (2005). doi:10.1115/1.1866165

    Article  Google Scholar 

  14. Yang, P., Qu, S., Kaneta, M., Nishikawa, H.: Formation of steady dimples in point TEHL contacts. Trans. ASME J. Tribol. 123, 42–49 (2001). doi:10.1115/1.1332399

    Article  Google Scholar 

  15. Fu, Z., Guo, F., Wong, P.L.: Non-classical elastohydrodynamic lubricating film shape under large slide-roll ratios. Tribol. Lett. 27, 211–219 (2007). doi:10.1007/s11249-007-9227-8

    Article  CAS  Google Scholar 

  16. Yagi, K., Vergne, P.: Abnormal film shapes in sliding elastohydrodynamic contacts lubricated by fatty alcohols. Proc. Inst. Mech. Eng. J. Eng. Tribol. 221, 287–300 (2007)

    Article  CAS  Google Scholar 

  17. Kaneta, M., Nishikawa, H., Kameishi, K.: Observation of wall slip in elastohydrodynamic lubrication. ASME J. Tribol. 112, 447–452 (1990). doi:10.1115/1.2920280

    Article  Google Scholar 

  18. Wong, P.L., Lingard, S., Cameron, A.: The high-pressure impact microviscometer. STLE Tribol. Trans. 35, 500–508 (1992). doi:10.1080/10402009208982148

    Article  CAS  Google Scholar 

  19. Kaneta, M., Kanzaki, Y., Kameishi, K., Nishikawa, H.: Non-Newtonian response of elastohydrodynamic oil films. In Proceedings Japan International Tribology Conference, Nagoya, pp. 1695–1700 (1990)

  20. Ehret, P., Dowson, D., Taylor, C.M.: Transient EHL solutions with interfacial slip. ASME J. Tribol. 121, 703–710 (1999). doi:10.1115/1.2834126

    Article  Google Scholar 

  21. Guo, F., Wong, P.L.: A multiple-beam intensity-based approach for thin lubricant film measurement in non-conformal contacts. Proc. Inst. Mech. Eng. J. Eng. Tribol. 216, 281–291 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their thanks to the City University of Hong Kong for providing financial support for this work (SRG 7002094). The authors are also grateful to Mr. X. M. Li for his kind assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Wong, P.L., Geng, M. et al. Occurrence of Wall Slip in Elastohydrodynamic Lubrication Contacts. Tribol Lett 34, 103–111 (2009). https://doi.org/10.1007/s11249-009-9414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9414-x

Keywords

Navigation