Skip to main content
Log in

Ni nanodot-patterned surfaces for adhesion and friction reduction

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Surface nano-patterning with Ni nanodot arrays was investigated for adhesion and friction reduction of contacting interfaces. Self-assembled anodized aluminum oxide (AAO) templates in conjunction with thermal evaporation was used to fabricate nano-patterned surfaces with ordered Ni nanodot arrays on Si substrates. Surface morphology of the Ni nanodot-patterned surfaces (NDPSs) was characterized by scanning electron microscopy (SEM). Adhesion and friction studies on a Ni NDPS and a baseline smooth Si(100) surface were conducted using a TriboIndenter employing a diamond tip with 100 μm nominal radius of curvature. The results show that the ordered Ni nanodot-patterning reduced the adhesion forces and coefficients of friction up to 92 and 83%, respectively, compared to those of the smooth silicon surface. Surprisingly, the nanoscale multi-asperity contact between the diamond tip and inhomogeneous Ni NDPSs under low loads follows a continuum contact mechanics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Y.-L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers (2002) Appl. Phys. Lett. 81:562

    Article  CAS  Google Scholar 

  2. S.K. Donthu, Z. Pan, G.S. Shekhawat, V.P. Dravid, B. Balakrisnan, S. Tripathy (2005) J. Appl. Phys. 98:024304

    Article  CAS  Google Scholar 

  3. J.-Y. Juang, D.B. Bogy (2005) Microsyst. Technol. 11:950

    Article  CAS  Google Scholar 

  4. K. Asakawa, M. Ishizuka (2002) Optronics 244:139

    CAS  Google Scholar 

  5. R. Murillo, W.H.A. Van, L. Abelmann, J.C. Lodder (2005) Microelectron. Eng. 78–79:260

    Article  CAS  Google Scholar 

  6. Y. Kono, A. Sekiguchi, Y. Hirai, S. Arasaki and K. Hattori, Progress in Biomedical Optics and Imaging – Proceedings of SPIE, Advances in Resist Technology and Processing XXII, 5753 (2005) 912

  7. D.-G. Choi, S.G. Jang, H.K. Yu, S.-M. Yang (2004) Chem. Mater. 16:3410

    Article  CAS  Google Scholar 

  8. H. Chik, J. Liang, S.G. Cloutier, N. Kouklin, J.M. Xu (2004) Appl. Phys. Lett. 84:3376

    Article  CAS  Google Scholar 

  9. H. Masuda, M. Satoh (1996) Jpn. J. Appl. Phys. 35:L126

    Article  CAS  Google Scholar 

  10. H. Masuda, K. Yasui, K. Nishio (2000) Adv. Mater. 12:1031

    Article  CAS  Google Scholar 

  11. J. Liang, H. Chik, A. Yin, J. Xu (2002) J. Appl. Phys. 91:2544

    Article  CAS  Google Scholar 

  12. K. Chilamakuri, B. Bhushan (1997) Tribol. Trans. 40:303

    CAS  Google Scholar 

  13. I. Etsion, G. Halperin (2002) Tribol. Trans. 45:430

    CAS  Google Scholar 

  14. Y. Kligerman, I. Etsion (2001) Tribol. Trans. 44:472

    CAS  Google Scholar 

  15. V. Brizmer, Y. Kligerman, I. Etsion (2003) Tribol. Trans. 46:397

    CAS  Google Scholar 

  16. N. Agraït, G. Rubio, S. Vieira (1995) Phys. Rev. Lett. 74:3995

    Article  Google Scholar 

  17. C.-H. Choi, J. Kim, and C.-J. Kim, Proc. 3rd ASME Integrated Nanosystems Conf.: Design, Synthesis, and Applications, Pasadena, CA, Sep. 2004, CD, IMECE2004-46078

  18. Z. Burton, B. Bhushan (2005) Nano Lett. 5:1607

    Article  CAS  Google Scholar 

  19. Jill Hruby, MRS Bulletin (April 2001) 337

  20. H. Masuda, K. Fukuda (1995) Science 268:1466

    Article  CAS  Google Scholar 

  21. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele (1998) J. Appl. Phys. 84:6023

    Article  CAS  Google Scholar 

  22. O. Jessenky, F. Muller, U. Gosele (1998) J. Electrochem. Soc. 145:3735

    Article  Google Scholar 

  23. K.L. Johnson, K. Kendall, A.D. Roberts (1971) Proc. R. Soc. Lond. A 324:301

    Article  CAS  Google Scholar 

  24. B.V. Derjaguin, V.M. Muller, Yu. P. Toporov (1975) J. Colloid Interf. Sci. 53:314

    Article  CAS  Google Scholar 

  25. K.N.G. Fuller, D. Tabor (1975) Proc. R. Soc. Lond. A 345:327

    Google Scholar 

  26. K. L. Johnson, Adhesion at the contact of solids, Theoretical and Applied Mechanics, ed. W.T. Koiter (Amsterdam: North Holland, 1976), p. 133

  27. D.S. Grierson, E.E. Flater, R.W. Carpick (2005) J. Adhes. Sci. Technol. 19:291

    Article  CAS  Google Scholar 

  28. K.L. Johnson (1987) Contact Mechanics. Cambridge University Press, New York, p. 93

    Google Scholar 

  29. D. Maugis (1992) J. Colloid Interf. Sci. 150:243

    Article  CAS  Google Scholar 

  30. R.W. Carpick, D.F. Ogletree, M. Salmeron (1999) J. Colloid Interf. Sci. 211:395

    Article  CAS  Google Scholar 

  31. N.P. Suh, H.-C. Sin (1981) Wear 69:91

    Article  CAS  Google Scholar 

  32. K. Komvopoulos, N. Saka, N.P. Suh (1985) ASME J. of Tribol. 107:452

    CAS  Google Scholar 

  33. K. Komvopoulos, N. Saka, N.P. Suh (1986) ASME J. of Tribol. 108:301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the College of Engineering, the Fulbright College of Arts & Sciences, and the Department of Mechanical Engineering of the University of Arkansas for major equipment funding support and the support of the Center for Semiconductor Physics in Nanostructures (C-SPIN), a OU/UA NSF-funded MRSEC (DMR-0080054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, M., Wang, H., Larson, P. et al. Ni nanodot-patterned surfaces for adhesion and friction reduction. Tribol Lett 24, 137–142 (2006). https://doi.org/10.1007/s11249-006-9157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9157-x

Keywords

Navigation