Skip to main content
Log in

A two-phase flow approach to cavitation modelling in journal bearings

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Cavitation has been extensively treated in numerical models for lubrication using boundary conditions in the pressure equation, and several criteria are available. However, an inappropriate choice can lead to imprecise results, thus having serious implications for performance prediction. This work proposes the numerical solution for lubrication analysing the changes suffered by the lubricant along a journal bearing, considering the release of gas from the liquid and the existence of a two-phase flow. Results obtained are compared with those using the Reynolds, or Swift-Steiber, boundary condition. The influence of fluid properties on the main parameters of bearing operation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  1. Taylor C.M., (1973)J. Mech. Eng. Sci. 15:237

    Article  Google Scholar 

  2. B. Jacobsson and L. Floberg, Trans. Chalmers Univ. Tech. 189 (1957)

  3. Dowson D., Taylor C.M., (1979) Ann. Rev. Fluid Mech. 11: 35

    Article  Google Scholar 

  4. M. Priest, R.I. Taylor, D. Dowson and C.M. Taylor, Proc. 22nd Leeds-Lyon Symp. Tribology 1995, Tribology Series 31. Elsevier, Amsterdam (1996), p. 441

  5. Priest M., Dowson D. and Taylor C.M., (2000) Proc. IMechE C 214: 435

    Article  Google Scholar 

  6. Tao L., Diaz S., San Andrés L. and Rajagopal K.R., (2000) J. Tribol. 122: 205

    Article  Google Scholar 

  7. Elrod H.G., (1981) J. Lub. Technol. 103: 350

    Google Scholar 

  8. Brewe D.E., (1986) J. Tribol. 108: 628

    Article  Google Scholar 

  9. Talmage G. and Carpino M., (2002) Tribol. Trans. 45:310

    Article  CAS  Google Scholar 

  10. Kumar A. and Booker J.F., (1991) J. Tribol. 113:276

    Article  Google Scholar 

  11. Tønder K., (1977) J. Lub. Technol. 99:354

    Google Scholar 

  12. Smith E.H., (1990) J. Lub. Technol. 102: 91

    Article  Google Scholar 

  13. Kicinski J., (1983) Wear 91:65

    Article  Google Scholar 

  14. S. Natsumeda and T. Someya, Proc. 13th Leed-Lyon Symp. Tribology (1986) 65

  15. T. Kawase and T. Someya, Proc. 4th European Tribology Cong. (1987)

  16. Someya T., (2003) Meccanica 38: 643

    Article  Google Scholar 

  17. Barbosa J.R. Jr., Lacerda V.T. and Prata A.T., (2004)Int. J. Ref. 27:129

    Article  CAS  Google Scholar 

  18. Feng N.S. and Hahn E.J., (1986) ASLE Trans. 29:361

    CAS  Google Scholar 

  19. Motta S.F.Y., Braga S.L. and Parise J.A.R., (2001) HVAC&R Res. 7:331

    Google Scholar 

  20. Na B.C., Chun K.J. and Han D.C., (1997) Tribol. Int. 30:707

    Article  CAS  Google Scholar 

  21. Ciantar C., Hadfield M., Smith A.M. and Swallow A., (1999) Wear 236:1

    Article  CAS  Google Scholar 

  22. F.P. Grando, M. Priest and A.T. Prata, Proc. 31st Leeds-Lyon Symp. Tribology 2004, Tribology and Interface Eng. Series. Elsevier, Amsterdam (2005), p. 481

  23. Zeidan F.Y. and Vance J.M., (1989) Tribol. Trans. 32:100

    Article  Google Scholar 

  24. Yokozeki A., (2002) Int. J. Ref. 25:695

    Article  CAS  Google Scholar 

  25. A. Prata, F. Grando, A. Silva and J. Barbosa Jr. Proc. Int. Compressor Conf. at Purdue (2004) C071

  26. Cullen E.J. and Davidson J.F., (1957) Trans. Faraday Soc. 52: 113

    Article  Google Scholar 

  27. Tsuchiya K., Mikasa H. and Saito T., (1997) Chem. Eng. Sci. 52: 4119

    Article  CAS  Google Scholar 

  28. Lacerda V.T., Prata A.T. and Fagotti F., (2000) Proc. ASME Adv. Eng. Sys. Div., 40:101

    Google Scholar 

  29. Pinkus O. and Sternlicht B., (1961) Theory of Hydrodynamic Lubrication. McGraw-Hill, New York

    Google Scholar 

  30. Carey V.P., (1992) Liquid-Vapor Phase Change Phenomena. Hemisphere, New York

    Google Scholar 

  31. Nikolajsen J., (1999) Tribol. Trans. 42: 186

    Article  CAS  Google Scholar 

  32. Patankar S.V., (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York

    Google Scholar 

  33. Hamrock B.J., (1994) Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York

    Google Scholar 

  34. McLinden M.O., Klein S.A., Lemmon E.W. and Peskin A.W., (1998) REFPROP version 6.0. NIST, Washington DC

    Google Scholar 

  35. Parkins D.W., (1985) Tribol. Int. 18:50

    Article  Google Scholar 

  36. A. Silva, Kynetics and Dynamics of Gas Absorption by Lubricant Oil. Deng Thesis, Fed. Univ. of Santa Catarina, Florianopolis, Brazil (2004)

Download references

Acknowledgments

This research is supported by the Programme Al \(\upbeta\) an, the European Union Programme of High Level Scholarships for Latin America, identification number E03D22219BR. Assistance from the Brazilian Compressor Company EMBRACO SA is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Grando.

Appendix A: Calculation of physical properties

Appendix A: Calculation of physical properties

Empiricism is the most common procedure to determine physical properties for oil–refrigerant mixtures, very often adjusting curves from experimental data that has been made available. In this work, properties for the mixture of refrigerant R134a and oil ICI EMKARATE RL10H were calculated using mainly data provided in graphical form by the oil manufacturer. For pure refrigerant, data were obtained from the software REFPROP [34]. This appendix presents the numerical correlations adopted to calculate the physical properties required. For further discussion on the properties of the fluids and the behaviour of this specific mixture, reference is made to Silva [36].

A.1. Solubility

The solubility of R134a in the polyol ester oil ICI EMKARATE RL10H was provided by the oil manufacturer in a diagram and adjusted by curve fitting for the interval 0 < p < 1000 kPa and 0<T<60 °C as,

$$ w_{\rm sat} = {{a_1 + b_1 p + c_1 T + d_1 p^2 + e_1 T^2 + f_1 Tp}\over {a_2 + b_2 p + c_2 T + d_2 p^2 + e_2 T^2 + f_2 Tp}} $$
(A.1)

where a 1=0.6825, b 1=0.0701, c 1=0.0699, d 1=−1.2087× 10−4, e 1=−1.7157× 10−3, f 1=2.4124× 10−3, a 2=1.0, b 2=−3.1315× 10−3, c 2=0.0503, d 2=1.0541× 10−6, e 2=1.3645× 10−3, f 2=−6.4074× 10−5.

A.2. Density

The density for the mixture R134a-EMKARATE RL10H is calculated using the additive law of mixtures. Considering an ideal mixture, the result is presented in equation (A2),

$$ \rho _{\rm l} = {{\rho _{\rm oil} }\over {1 + w_{\rm r} \left( {{{\rho _{\rm oil} }\over {\rho _{\rm lr} }} - 1} \right)}} $$
(A.2)

where ρl is the density of the liquid mixture, ρoil the density of the pure oil, ρlr the density of the liquid refrigerant, and w r is the refrigerant mass fraction.

The oil density, provided by the manufacturer and adjusted in the range 20<T<120 °C is given by

$$ \rho _{\rm oil} = a_3 + b_3 T + c_3 T^2 $$
(A.3)

where a 3=966.4364, b 3=−0.5739, c 3=−2.447× 10−4, and ρoil the density in kg/m3.

The density of the liquid refrigerant is obtained from the software REFPROP [34] and validated for the interval −5<T<50 °C as follows

$$ \rho _{\rm lr} = a_4 + b_4 T + c_4 T^2 $$
(A.4)

where a 4=1294.6790, b 4=−3.2213, c 4=−0.0123, and ρlr the density in kg/m3.

A.3. Dynamic viscosity

The viscosity of the liquid mixture R134a and the polyol ester oil was provided by the oil manufacturer and the following fit is proposed for the interval 0<T<60 °C and 0<w r<1,

$$ \mu _{\rm l} = {{a_5 + b_5 T + c_5 w_{\rm r} + d_5 T^2 + e_5 w^2 _{\rm r} + f_5 Tw_{\rm r} }\over {a_6 + b_6 T + c_6 w_{\rm r} + d_6 T^2 + e_6 w^2 _{\rm r} + f_6 Tw_{\rm r} }} $$
(A.5)

where a 5=0.0371, b 5=9.1603× 10−5, c 5=−0.0800, d 5=−2.7390× 10−7, e 5=−0.0435, f 5=−6.0485× 10−5, a 6=1.0, b 6=0.0531, c 6=2.2309, d 6=1.1656× 10−3, e 6=−0.3053, f 6=0.0334; and μl the viscosity (Pa s).

A.4. Properties for the refrigerant in gas phase

The properties of the gas were obtained using the software REFPROP [34], and for the interval 0<p<1600 kPa and 0<T<60 °C the following fits are proposed for density ρg (kg/m3) and viscosity μg (Pa s), respectively,

$$ \rho_{\rm g} = {{a_7 + b_7 p + c_7 T + d_7 p^2 + e_7 T^2 + f_7 Tp}\over {a_8 + b_8 p + c_8 T + d_8 p^2 + e_8 T^2 + f_8 Tp}} $$
(A.6)

where a 7=4.2473× 10−3, b 7=−1.9077× 10−4, c 7=0.0448, d 7=3.4605× 10−5, e 7=−2.4624× 10−5, f 7=5.3830× 10−4, a 8=1.0, b 8=0.0155, c 8=−8.2500× 10−4, d 8=4.5680× 10−5, e 8=6.9326× 10−8, f 8=−2.1388× 10−6.

$$ \mu _g = {{a_9 + b_9 p + c_9 T + d_9 T^2 + e_9 p^3 }\over {a_{10} + b_{10} p + c_{10} p^2 + d_{10} T}} \times 10^{ - 6} $$
(A.7)

where a 9=10.8186, b 9=−2.6052× 10−3, c 9=0.1451, d 9=3.7658× 10−4, e 9=−2.0170× 10−7, a 9=1.0, b 10=−2.1278× 10−4, c 10=−7.752× 10−9, d 10=9.6695× 10−3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grando, F.P., Priest, M. & Prata, A.T. A two-phase flow approach to cavitation modelling in journal bearings. Tribol Lett 21, 233–244 (2006). https://doi.org/10.1007/s11249-006-9027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9027-6

Key words:

Navigation