Skip to main content

Advertisement

Log in

Improvement of anti-nutritional effect resulting from β-glucanase specific expression in the parotid gland of transgenic pigs

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

β-Glucan is the predominant anti-nutritional factors in monogastric animal feed. Although β-glucanase supplementation in diet can help to eliminate the adverse effects, enzyme stability is substantially modified during the feed manufacturing process. To determine whether the expression of endogenous β-glucanase gene (GLU) in vivo can improve digestibility of dietary β-glucan and absorption of nutrients, we successfully produced transgenic pigs via nuclear transfer which express the GLU from Paenibacillus polymyxa CP7 in the parotid gland. In three live transgenic founders, β-glucanase activities in the saliva were 3.2, 0.07 and 0.03 U/mL, respectively, and interestingly the enzyme activities increased in the pigs from 178 days old to 789 days old. From the feed the amount of gross energy, crude protein and crude fat absorbed by the transgenic pigs was significantly higher than the non-transgenic pigs. Meanwhile the moisture content of the feces was significantly reduced in transgenic pigs compared with the non-transgenic pigs. Furthermore, in all positive G1 pigs, β-glucanase activity was detectable and the highest enzyme activity reached 3.5 U/mL in saliva. Also, crude protein digestion was significantly higher in G1 transgenic pigs than in control pigs. Taken together, our data showed that the transgenic β-glucanase exerted its biological catalytic function in vivo in the saliva, and the improved performance of the transgenic pigs could be accurately passed on to the offspring, indicating a promising alternative approach to improving nutrient availability was established to improve utilization of livestock feed through transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alien ND, Cran DG, Barton SC, Hettle S, Reik W, Surani MA (1988) Transgenes as probes for active chromosomal domains in mouse development. Nature 333:852–855

    Article  Google Scholar 

  • Al-Shawi R, Kinnaird J, Burke J, Bishop J (1990) Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Mol Cell Biol 10:1192–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacic A, Stone B (1981) Chemistry and organization of aleurone cell wall components from wheat and barley. Funct Plant Biol 8:475–495

    CAS  Google Scholar 

  • Bedford M (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155

    Article  CAS  Google Scholar 

  • Bedford MR, Classen HL (1992) Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J Nutr 122:560–569

    CAS  PubMed  Google Scholar 

  • Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398. doi:10.1038/nature05913

    Article  CAS  PubMed  Google Scholar 

  • Borriss R, Zemek J, Augustin J, Pacova Z, Kuniak L (1980) beta-1, 3-1, 4-Glucanase in sporeforming microorganisms. II. Production of beta-glucan-hydrolases by various Bacillus species (author’s transl). Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Zweite naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft der Technologie und des Umweltschutzes 135:435

    Article  CAS  Google Scholar 

  • Borriss R, Olsen O, Thomsen KK, Von Wettstein D (1989) Hybrid Bacillus endo-(1–3, 1–4)-β-glucanases: construction of recombinant genes and molecular properties of the gene products. Carlsberg Res Commun 54:41–54

    Article  CAS  PubMed  Google Scholar 

  • Brenes A, Smith M, Guenter W, Marquardt R (1993) Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat- and barley-based diets. Poult Sci 72:1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, He CY, Meuse L, Kay MA (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856–864. doi:10.1038/sj.gt.3302231

    Article  CAS  PubMed  Google Scholar 

  • Chesson A (1993) Feed enzymes. Anim Feed Sci Technol 45:65–79

    Article  CAS  Google Scholar 

  • Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA, Lee SW (2007) Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130:624–637. doi:10.1016/j.cell.2007.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W et al (2011) Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS One 6:e19986. doi:10.1371/journal.pone.0019986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dygert S, Li LH, Florida D, Thoma JA (1965) Determination of reducing sugar with improved precision. Anal Biochem 13:367–374

    Article  CAS  PubMed  Google Scholar 

  • Feighner SD, Dashkevicz MP (1988) Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates. Appl Environ Microbiol 54:337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint H, Martin J, McPherson C, Daniel A, Zhang J (1993) A bifunctional enzyme, with separate xylanase and beta (1, 3-1, 4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175:2943–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19:429–433

    Article  CAS  PubMed  Google Scholar 

  • Golovan SP et al (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  CAS  PubMed  Google Scholar 

  • Guan LZ et al (2013) β-Glucanase specific expression in the parotid gland of transgenic mice. Transgenic Res 22:805–812

    Article  CAS  PubMed  Google Scholar 

  • Han J, Li BK, Li KX, He JL (2008) Study on property and application of β-glueanase. China Brew 17:4–7

    Google Scholar 

  • Jensen M, Knudsen KB, Inborr J, Jakobsen K (1998) Effect of β-glucanase supplementation on pancreatic enzyme activity and nutrient digestibility in piglets fed diets based on hulled and hulless barley varieties. Anim Feed Sci Technol 72:329–345

    Article  CAS  Google Scholar 

  • Johnson I, Gee JM (1981) Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut 22:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-Y (2003) Overproduction and secretion of Bacillus circulans endo-β-1, 3-1, 4-glucanase gene (bglBC1) in B. subtilis and B. megaterium. Biotechnol Lett 25:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KEB (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 67:319–338

    Article  Google Scholar 

  • Kong Q et al (2009) Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 4(8):10

    Article  PubMed Central  Google Scholar 

  • Lai L, Prather RS (2003) Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5:233–241. doi:10.1089/153623003772032754

    Article  CAS  PubMed  Google Scholar 

  • Li S, Sauer W, Mosenthin R, Kerr B (1996) Effect of β-glucanase supplementation of cereal-based diets for starter pigs on the apparent digestibilities of dry matter, crude protein and energy. Anim Feed Sci Technol 59:223–231

    Article  CAS  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312. doi:10.1093/treephys/tpn028

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Gee J, Brown J, Wood P, Johnson I (1989) Effect of oat gum on the physical properties of the gastrointestinal contents and on the uptake of D-galactose and cholesterol by rat small intestine in vitro. Br J Nutr 62:91–101

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Sweeney T, Callan J, O’Doherty J (2007) Effects of increasing the intake of dietary β-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs. Animal 1:812–819

    Article  CAS  PubMed  Google Scholar 

  • Mehta AK, Majumdar SS, Alam P, Gulati N, Brahmachari V (2009) Epigenetic regulation of cytomegalovirus major immediate-early promoter activity in transgenic mice. Gene 428:20–24. doi:10.1016/j.gene.2008.09.033

    Article  CAS  PubMed  Google Scholar 

  • Melo EO, Canavessi AM, Franco MM, Rumpf R (2007) Animal transgenesis: state of the art and applications. J Appl Genet 48:47–61. doi:10.1007/BF03194657

    Article  PubMed  Google Scholar 

  • Mikkelsen TR et al (1992) Tissue-specific expression in the salivary glands of transgenic mice. Nucleic Acids Res 20:2249–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran E, Lall S, Summers J (1969) The feeding value of rye for the growing chick: effect of enzyme supplements, antibiotics, autoclaving and geographical area of production. Poult Sci 48:939–949

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T et al (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80:564–574

    Article  CAS  PubMed  Google Scholar 

  • Olsen O, Borriss R, Simon O, Thomsen KK (1991) Hybrid Bacillus (1-3, 1-4)-β-glucanases: engineering thermostable enzymes by construction of hybrid genes. Mol Gen Genet MGG 225:177–185

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou M, Lakhdara N, Lazaridou A, Biliaderis C, Izydorczyk M (2005) Water extractable (1 → 3, 1 → 4)-β-D-glucans from barley and oats: an intervarietal study on their structural features and rheological behaviour. J Cereal Sci 42:213–224

    Article  CAS  Google Scholar 

  • Planas A (2000) Bacterial 1, 3-1, 4-β-glucanases: structure, function and protein engineering. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1543:361–382

    Article  CAS  Google Scholar 

  • Preece I, Mackenzie K (1952) Non-starchy polysaccharides of cereal grains. I. Fractionation of the barley gums. J Inst Brew 58:353–362

    Article  Google Scholar 

  • Rasper VF (1984) Cereal polysaccharides in technology and nutrition. American Association of Cereal Chemists, Eagan

    Google Scholar 

  • Rossiter P, Walsh G (2001) Stability of beta glucanase under conditions simulating the digestive tract. Biochem Soc Trans 29:A114

    Article  Google Scholar 

  • Samuelson LC (1996) Transgenic approaches to salivary gland research. Annu Rev Physiol 58:209–229

    Article  CAS  PubMed  Google Scholar 

  • Schimming S, Schwarz WH, Staudendauer WL (1992) Structure of the Clostridium thermocellum gene licB and the encoded β-1, 3-1, 4-glucanase. Eur J Biochem 204:13–19

    Article  CAS  PubMed  Google Scholar 

  • Shen M-q, Lu X-x, Cui L, Xu J-x (2003) Effects of different store condition on xylanase and β-glucanase activity. J Shanghai Jiaotong Univ (Agric Sci) 21:29–33

    Google Scholar 

  • Stinnakre MG, Soulier S, Schibler L, Lepourry L, Mercier JC, Vilotte JL (1999) Position-independent and copy-number-related expression of a goat bacterial artificial chromosome alpha-lactalbumin gene in transgenic mice. Biochem J 339(Pt 1):33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Li W, Gu S (2002) Stability of beta glucanase under conditions simulating animal digestive tract in vitro. Chin J Anim Sci 38:18–19

    Google Scholar 

  • Tsai LC, Shyur LF, Lee SH, Lin SS, Yuan HS (2003) Crystal structure of a natural circularly permuted jellyroll protein: 1, 3-1, 4-β-D-glucanase from Fibrobacter succinogenes. J Mol Biol 330:607–620

    Article  CAS  PubMed  Google Scholar 

  • Walsh PRaG (1995) Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim Feed Sci Technol 53:145–155

    Article  Google Scholar 

  • Walsh GA, Power RF, Headon DR (1993) Enzymes in the animal-feed industry. Trends Biotechnol 11:424–430

    Article  CAS  PubMed  Google Scholar 

  • White WB, Bird H, Sunde M, Prentice N, Burger W, Marlett J (1981) The viscosity interaction of barley beta-glucan with Trichoderma viride cellulase in the chick intestine. Poult Sci 60:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Woyewoda AD, Shaw S, Ke P, Burns B (1986) Recommended laboratory methods for assessment of fish quality. Can Tech Rep Fish Aquat Sci 143:1448

    Google Scholar 

  • Wu Z et al (2013) Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22:1107–1118. doi:10.1007/s11248-013-9729-0

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45:127–144

    PubMed  Google Scholar 

  • Yin HF, Fan BL, Yang B, Liu YF, Luo J, Tian XH, Li N (2006) Cloning of pig parotid secretory protein gene upstream promoter and the establishment of a transgenic mouse model expressing bacterial phytase for agricultural phosphorus pollution control. J Anim Sci 84:513–519

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Kong QR, Zhao ZP, Wu ML, Mu YS, Hu K, Liu ZH (2012) Position effect variegation and epigenetic modification of a transgene in a pig model. Genet Mol Res GMR 11:355–369. doi:10.4238/2012.February.16.1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Key Project of Transgenic Animal (2014ZX0800948B), the National Basic Research Program of China (973 Program, 2013CB127304), Natural Science Foundation of China Program (31272529, 31472163), and the Key Project of Guangdong Provincial Nature Science Foundation (S2013020012766), the Natural Science Foundation of Guangdong province (2016A030313413).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-yun Xi or Yong-liang Zhang.

Ethics declarations

Conflict of interest

None of the authors declare any conflicts of interest.

Additional information

Li-zeng Guan, Jin-shun Cai and Shuai Zhao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Lz., Cai, Js., Zhao, S. et al. Improvement of anti-nutritional effect resulting from β-glucanase specific expression in the parotid gland of transgenic pigs. Transgenic Res 26, 1–11 (2017). https://doi.org/10.1007/s11248-016-9984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9984-y

Keywords

Navigation