Skip to main content
Log in

The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing co-transformed high molecular weight glutenin subunit genes and the selectable marker bar using fluorescence in situ hybridization. Transgene loci were shown to distribute unevenly throughout the genome and incorporate into different locations along individual chromosomes. There was only a slight tendency towards the localization of transgenes in distal chromosome regions. High proportions of transgenes in separate plasmids integrated at the same site and only 7 lines had 2 or 3 loci. Such loci may not segregate frequently in subsequent generations so it is difficult to remove selectable markers from transgenic lines after regeneration. We also found that three transgene lines were associated with rearranged chromosomes, suggesting a the close relationship between particle bombardment-mediated transgene integration and chromosomal rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abranches R, Santos AP, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E (2000) Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J 24(6):713–723

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Arias RS, Filichkin SA, Strauss SH (2006) Divide and conquer: development and cell cycle genes in plant transformation. Trends Biotech 24:267–273

    Article  CAS  Google Scholar 

  • Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50(10):907–926

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Carels N, Bernardi G (1997) The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci USA 94(13):6857–6861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedbrook J, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  CAS  PubMed  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high molecular weight glutenin subunit gene in transgenic wheat. Nat Biotech 14(7):875–879

    Article  CAS  Google Scholar 

  • Bregitzer P, Blechl AE, Fiedler D, Lin J, Sebesta P, De Soto JF, Chicaiza O, Dubcovsky J (2006) Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci 46(4):1553–1563

    Article  CAS  Google Scholar 

  • Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR, McLaughlan CJ, Bawden CS, Reid SJ, Faull RL, Snell RG, Hall IM, Shen Y, Ohsumi TK, Borowsky ML, Daly MJ, Lee C, Morton CC, MacDonald ME, Gusella JF, Talkowski ME (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44(4):390–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2002) Use of fluorescence in situ hybridization for gross mapping of transgenes and screening for homozygous plants in transgenic barley (Hordeum vulgare L.). Theor Appl Genet 106:92–100

    CAS  PubMed  Google Scholar 

  • Christou P (1995) Particle bombardment. Methods Cell Biol 50:375–382

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Feng B, Liang H, Rong C, Zhang K, Cao X, Qin H, Liu X, Wang T, Wang D (2015) Grain-specific reduction in lipoxygenase activity improves flour color quality and seed longevity in common wheat. Mol Breed 35:150

    Article  Google Scholar 

  • Fritsch L, Fischer R, Wambach C, Dudek M, Schillberg S, Schröper F (2015) Next-generation sequencing is a robust strategy for the highthroughput detection of zygosity in transgenic maize. Transgenic Res 24:615–623

    Article  CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR (1993) A chromosome region specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102:374–381

    Article  CAS  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJ (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iida A, Yamashita T, Yamada Y, Morikawa H (1991) Efficiency of particle bombardment-mediated transformation is influenced by cell-cycle stage in synchronised cultured cells of tobacco. Plant Physiol 97:1585–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasai F, Yoshihara M, Matsukuma S, O’Brien P, Ferguson-Smith MA (2007) Emergence of complex rearrangements at translocation breakpoints in a transgenic mouse: implications for mechanisms involved in the formation of chromosome rearrangements. Cytogenet Genome Res 119(1–2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P (2006) The Quest to Understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal Behav 1(4):185–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Saux A, Houdebine LM, Jolivet G (2010) Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Transgenic Res 19(5):923–931

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wan Y, Liu Z, Liu K, Liu X, Li B, Li Z, Zhang X, Dong Y, Wang D (2004) Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theor Appl Genet 109:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Li Y, An X, Yang R, Guo X, Yue G, Fan R, Li B, Li Z, Zhang K, Dong Z, Zhang L, Wang J, Jia X, Ling HQ, Zhang A, Zhang X, Wang D (2015) Dissecting and enhancing the contributions of high-molecular-weightglutenin subunits to dough functionality and bread quality. Mol Plant 8(2):332–334

    Article  CAS  PubMed  Google Scholar 

  • Mackie AM, Sharp PJ, Lagudah ES (1996) The nucleotide and derived amino acid sequence of a HMW glutenin gene from Triticum tauschii and comparison with those from the D genome of bread wheat. J Cereal Sci 24:73–78

    Article  CAS  Google Scholar 

  • Mao X, Li Y, Zhao S, Zhang J, Lei Q, Meng D, Ma F, Hu W, Chen M, Chang J, Wang Y, Yang G, He G (2013) The interactive effects of transgenically overexpressed 1Ax1 with various HMW-GS combinations on dough quality by introgression of exogenous subunits into an elite Chinese Wheat variety. PLoS ONE 8(10):e78451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95:12106–12110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen C, Zimny J, Becker D, Janhne-Gartner A, Lorz H (1997) Localization of introduced genes on the chrmomosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor Appl Genet 94:749–757

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255

    CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organisation in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettes. Transgenic Res 12(4):461–473

    Article  CAS  PubMed  Google Scholar 

  • Rooke L, Steele SH, Barcelo P, Shewry PR, Lazzeri PA (2003) Transgene inheritance, segregation and expression in bread wheat. Euphytica 129:301–309

    Article  CAS  Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Stoger E, Williams S, Keen D, Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Trans Res 7:463–471

    Article  CAS  Google Scholar 

  • Svitashev S, Ananiev E, Pawlowski WP, Somers DA (2000) Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet 100:872–880

    Article  CAS  Google Scholar 

  • Taketa S, Kawahara T (1996) C-banding analysis on wild Emmer (Triticum dicoccoides Körn) strains with and without spontaneous reciprocal translocations. Theor Appl Genet 92:173–178

    Article  CAS  PubMed  Google Scholar 

  • Uçarlı C, Tufan F, Gürel F (2015) Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos. Genet Mol Res 14(1):1096–1105

    Article  PubMed  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, SnagwanNorreel BS (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Yan BW, Zhao YF, Cao WG, Li N, Gou KM (2013) Mechanism of random integration of foreign DNA in transgenic mice. Trans Res 22(5):983–992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the financial support from China Postdoctoral Science Foundation to Yonghua Han (20090460049 and 201003181) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghua Han or Daowen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Blechl, A. & Wang, D. The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat. Transgenic Res 24, 1055–1063 (2015). https://doi.org/10.1007/s11248-015-9906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9906-4

Keywords

Navigation