Skip to main content
Log in

Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Infectious bursal disease virus (IBDV) is the causative agent of a highly contagious disease affecting young chickens and causes serious economic losses to the poultry industry worldwide. Development of subunit vaccine using its major caspid protein, VP2, is one of the promising strategies to protect against IBDV. This study aim to test the feasibility of using silkworm to produce recombinant VP2 protein (rVP2) derived from a very virulent strain of IBDV (vvIBDV). A total of 16 transgenic silkworm lines harboring a codon-optimized VP2 gene driven by the sericin1 promoter were generated and analyzed. The results showed that the rVP2 was synthesized in the middle silk gland of all lines and secreted into their cocoons. The content of rVP2 in the cocoon of each line was ranged from 0.07 to 16.10 % of the total soluble proteins. The rVP2 was purified from 30 g cocoon powders with a yield of 3.33 mg and a purity >90 %. Further analysis indicated that the rVP2 was able to tolerate high temperatures up to 80 °C, and exhibited specific immunogenic activity in mice. To our knowledge, this is the first report of overexpressing rVP2 in the middle silk gland of transgenic silkworm, which demonstrates the capability of silkworm as an efficient tool to produce recombinant immunogens for use in new vaccines against animal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M (2010) Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 106:860–870

    Article  CAS  PubMed  Google Scholar 

  • Arnold M, Durairaj V, Mundt E, Schulze K, Breunig KD, Behrens SE (2012) Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PLoS ONE 7:e42870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azizi M, Yakhchali B, Ghamarian A, Enayati S, Khodabandeh M, Khalaj V (2013) Cloning and Expression of Gumboro VP2 Antigen in Aspergillus niger. Avicenna J Med Biotechnol 5:35–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg TP (2000) Acute infectious bursal disease in poultry: a review. Avian Pathol 29:175–194

    Article  CAS  PubMed  Google Scholar 

  • Berg TP, Gonze M, Morales D, Meulemans G (1996) Acute infectious bursal disease in poultry: immunological and molecular basis of antigenicity of a highly virulent strain. Avian Pathol 25:751–768

    Article  CAS  PubMed  Google Scholar 

  • Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772

    Article  CAS  PubMed  Google Scholar 

  • Eterradossi N, Toquin D, Rivallan G, Guittet M (1997) Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol 142:255–270

    Article  CAS  PubMed  Google Scholar 

  • Gómez E, Lucero MS, Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Berinstein A (2013) Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 31:2623–2627

    Article  PubMed  Google Scholar 

  • He CQ, Ma LY, Wang D, Li GR, Ding NZ (2009) Homologous recombination is apparent in infectious bursal disease virus. Virology 384:51–58

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  CAS  PubMed  Google Scholar 

  • Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–5820

    Article  CAS  PubMed  Google Scholar 

  • Jackwood DJ, Sommer-Wagner SE, Crossley BM, Stoute ST, Woolcock PR, Charlton BR (2011) Identification and pathogenicity of a natural reassortant between a very virulent serotype 1 infectious bursal disease virus (IBDV) and a serotype 2 IBDV. Virology 420:98–105

    Article  CAS  PubMed  Google Scholar 

  • Lasher HN, Davis VS (1997) History of infectious bursal disease in the U.S.A.–the first two decades. Avian Dis 41:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub HA, Bailey M, Kaiser P (2012) An overview of infectious bursal disease. Arch Virol 157:2047–2057

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Torrecuadrada JL, Saubi N, Pagès-Manté A, Castón JR, Espuña E, Casal JI (2003) Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 21:3342–3350

    Article  CAS  PubMed  Google Scholar 

  • Müller H, Islam MR, Raue R (2003) Research on infectious bursal disease–the past, the present and the future. Vet Microbiol 97:153–165

    Article  PubMed  Google Scholar 

  • Mundt E (1999) Tissue culture infectivity of different strains of infectious bursal disease virus is determined by distinct amino acids in VP2. J Gen Virol 80:2067–2076

    CAS  PubMed  Google Scholar 

  • Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544

    Article  CAS  PubMed  Google Scholar 

  • Pitcovski J, Gutter B, Gallili G, Goldway M, Perelman B, Gross G, Krispel S, Barbakov M, Michael A (2003) Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens. Vaccine 21:4736–4743

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Cheng T, Liu X, Jiang T, Gu H, Zou G (2005) Development of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens. Vaccine 23:4844–4851

    Article  CAS  PubMed  Google Scholar 

  • Saugar I, Luque D, Oña A, Rodríguez JF, Carrascosa JL, Trus BL, Castón JR (2005) Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Structure 13:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654

    Article  CAS  PubMed  Google Scholar 

  • Urano S, Kaneko C, Nei T, Motoi N, Tazawa R, Watanabe M, Tomita M, Adachi T, Kanazawa H, Nakata K (2010) A cell-free assay to estimate the neutralizing capacity of granulocyte-macrophage colony-stimulating factor autoantibodies. J Immunol Methods 360:141–148

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Xu H, Yuan L, Ma S, Wang Y, Duan X, Duan J, Xiang Z, Xia Q (2013) An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res 22:925–938

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Singh NK, Locy RD, Scissum-Gunn K, Giambrone JJ (2004) Immunization of chickens with VP2 protein of infectious bursal disease virus expressed in Arabidopsis thaliana. Avian Dis 48:663–668

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Hongjuan Cui of Southwest University, China, for improving this manuscript. This work was supported by the National Basic Research Program of China (2012CB114600), and Grant (XDJK2014B014) from the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfu Xu.

Additional information

Hanfu Xu and Lin Yuan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11248_2014_9827_MOESM1_ESM.tif

Fig. S1. Structure of the expression vector pBhSer1VP2. The resulting vector is composed of five units between the right- and left-arms of piggyBac transposon: BmNPV hr3 enhancer, Ser1 promoter, coding sequence of VP2, 3’-UTR sequence of Ser1, and 3×P3 promoter-driven EGFP cDNA with a SV40 polyA signal

11248_2014_9827_MOESM2_ESM.tif

Fig. S2. Generation of the transgenic silkworm positive for EGFP. (A) Bright-field (left) and fluorescent (right) images of Day-7 eggs (a, b) and an adult (c, d) that carry the 3×P3-EGFP and VP2 gene. Arrowheads indicate EGFP-positive eggs. (B) Southern blotting analysis of transgenic lines. Genomic DNA samples from transgenic (L2, 6, 7, 8, 13, 14) and wild-type (WT) moths were digested using the EcoR I and Xba I, separated by agarose gel electrophoresis, and subjected to Southern blotting using a digoxigenin-labeled probe specific for the EGFP(TIFF 3054 kb)

(TIFF 1303 kb)

11248_2014_9827_MOESM4_ESM.tif

Fig. S3. Determination of the peptide sequence of rVP2. Sequences highlighted in black indicate the original peptide sequence of VP2 in GenBank (accession no. JF907703). Blue letters show the peptide sequences of rVP2 determined by MS+MS/MS. Red letters show the mutant amino acids of VP2 (B87 strain, accession no. DQ202329). Red frame represents the neutralizing antibody binding region (TIFF 1718 kb)

11248_2014_9827_MOESM5_ESM.tif

Fig. S4. AGP analysis of rVP2 (a) and IBD antigen (b). 0: rVP2 protein; 1: PBS buffer (pH 7.4); 2: rVP2 serum; 3: B87 vaccine serum; 4: IBD positive serum; 5: IBD antigen(TIFF 3284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Yuan, L., Wang, F. et al. Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm. Transgenic Res 23, 809–816 (2014). https://doi.org/10.1007/s11248-014-9827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9827-7

Keywords

Navigation