Skip to main content
Log in

Relative transgene expression frequencies in homozygous versus hemizygous transgenic mice

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We have used a simple binomial model of stochastic transgene inactivation at the level of the chromosome or transgene, rather than the cellular level, for the analysis of two mouse transgenic lines that show variegated patterns of expression. This predicts the percentages of cells that express one, both or neither alleles of the transgene in homozygotes from the observed percentages of cells, which express the transgene in hemizygotes. It adequately explained the relationship between the numbers of cells expressing the transgene in hemizygous and homozygous mosaic 21OH/LacZ mouse adrenals and mosaic BLG/7 mouse mammary glands. The binomial model also predicted that a small proportion of cells in mosaic mammary glands of BLG/7 homozygotes would express both BLG/7 alleles but published data indicated that all cells expressing the transgene showed monoallelic expression. Although it didn’t fit all of the BLG/7 data as precisely as a more complex model, which used several ad hoc assumptions to explain these results, the simple binomial model was able to explain the relationship in observed transgene expression frequencies between hemizygous and homozygous mosaic tissues for both 21OH/LacZ and BLG/7 mice. It may prove to be a useful general model for analysing other transgenic animals showing mosaic transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alami R, Greally JM, Tanimoto K, Hwang S, Feng YQ, Engel JD, Fiering S, Bouhassira EE (2000) Beta-globin YAC transgenes exhibit uniform expression levels but position effect variegation in mice. Hum Mol Genet 9(4):631–636. doi:10.1093/hmg/9.4.631

    Article  PubMed  CAS  Google Scholar 

  • Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ, Preis JI, Arkell R, Whitelaw E (2005) An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci USA 102(21):7629–7634

    Article  PubMed  CAS  Google Scholar 

  • Bodenstein L, Sidman RL (1987) Growth and development of the mouse retinal pigment epithelium. II. Cell patterning in experimental chimeras and mosaics. Dev Biol 121(1):205–219

    Article  PubMed  CAS  Google Scholar 

  • Chang SP, Mullins JJ, Morley SD, West JD (2011) Transition from organogenesis to stem cell maintenance in the mouse adrenal cortex. Organogenesis 7(4):267–280. doi:10.4161/org.7.4.18060

    Article  PubMed  Google Scholar 

  • Collinson JM, Morris L, Reid AI, Ramaesh T, Keighren MA, Flockhart JH, Hill RE, Tan SS, Ramaesh K, Dhillon B, West JD (2002) Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium. Dev Dyn 224(4):432–440

    Article  PubMed  Google Scholar 

  • Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M (1996) Variegated transgene expression in mouse mammary-gland is determined by the transgene integration locus. Proc Natl Acad Sci USA 93(13):6659–6664

    Article  PubMed  CAS  Google Scholar 

  • Douvaras P, Webb S, Whitaker DA, Dorà N, Hill RE, Dorin JR, West JD (2012) Rare corneal clones in mice suggest an age-related decrease of stem cell activity and support the limbal epithelial stem cell hypothesis. Stem Cell Res 8(1):109–119. doi:10.1016/j.scr.2011.08.007

    Article  PubMed  CAS  Google Scholar 

  • Eberhard D, Jockusch H (2004) Intermingling versus clonal coherence during skeletal muscle development: mosaicism in eGFP/nLacZ-labeled mouse chimeras. Dev Dyn 230(1):69–78

    Article  PubMed  CAS  Google Scholar 

  • Garrick D, Fiering S, Martin DIK, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18(1):56–59

    Article  PubMed  CAS  Google Scholar 

  • Guy LG, Kothary R, Wall L (1997) Position effects in mice carrying a lacZ transgene in cis with the beta-globin LCR can be explained by a graded model. Nucleic Acids Res 25(21):4400–4407. doi:10.1093/nar/25.21.4400

    Article  PubMed  CAS  Google Scholar 

  • Hadjantonakis AK, Cox LL, Tam PPL, Nagy A (2001) An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29(3):133–140

    Article  PubMed  CAS  Google Scholar 

  • Hatano O, Takakusu A, Nomura M, Morohashi K (1996) Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells 1(7):663–671

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Call MK, Liu CY, Hayashi M, Babcock G, Ohashi Y, Kao WWY (2010) Monoallelic expression of Krt12 gene during corneal-type epithelium differentiation of limbal stem cells. Invest Ophthalmol Vis Sci 51(9):4562–4568. doi:10.1167/iovs.10-5331

    Article  PubMed  Google Scholar 

  • Iannaccone PM, Weinberg WC (1987) The histogenesis of the rat adrenal cortex—a study based on histologic analysis of mosaic pattern in chimeras. J Exp Zool 243(2):217–223

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Shen WH, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-i, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8(5):654–662. doi:10.1210/me.8.5.654

    Article  PubMed  CAS  Google Scholar 

  • Manuel M, Georgala PA, Carr CB, Chanas S, Kleinjan DA, Martynoga B, Mason JO, Molinek M, Pinson J, Pratt T, Quinn JC, Simpson TI, Tyas DA, van Heyningen V, West JD, Price DJ (2007) Controlled overexpression of Pax6 in vivo negatively auto-regulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization. Development 134(3):545–555

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1976) Mammalian chimaeras. Cambridge University Press, Cambridge

    Google Scholar 

  • Morley SD, Viard I, Chung BC, Ikeda Y, Parker KL, Mullins JJ (1996) Variegated expression of a mouse steroid 21-hydroxylase/β-galactosidase transgene suggests centripetal migration of adrenocortical cells. Mol Endocrinol 10(5):585–598

    Article  PubMed  CAS  Google Scholar 

  • Morley SD, Chang SP, Tan SS, West JD (2004) Validity of the 21-OH/LacZ transgenic mouse as a model for studying adrenocortical cell lineage. Endocr Res 30(4):513–519

    Article  PubMed  CAS  Google Scholar 

  • Mort RL, Ramaesh T, Kleinjan DA, Morley SD, West JD (2009) Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium. BMC Dev Biol 9:4

    Article  PubMed  Google Scholar 

  • Nicolas JF, Mathis L, Bonnerot C (1996) Evidence in the mouse for self-renewing stem-cells in the formation of a segmented longitudinal structure, the myotome. Development 122(9):2933–2946

    PubMed  CAS  Google Scholar 

  • Opsahl ML (2001) Variegated transgene expression in mice. PhD thesis, University of Edinburgh

  • Opsahl ML, Springbett A, Lathe R, Colman A, McClenaghan M, Whitelaw CBA (2003) Mono-allelic expression of variegating transgene locus in the mouse. Transgenic Res 12(6):661–669

    Article  PubMed  CAS  Google Scholar 

  • Preis JI, Downes M, Oates NA, Rasko JEJ, Whitelaw E (2003) Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome. Curr Biol 13(11):955–959

    Article  PubMed  CAS  Google Scholar 

  • Rahman MA, Hwang GL, Razak SA, Sohm F, Maclean N (2000) Copy number related transgene expression and mosaic somatic expression in hemizygous and homozygous transgenic tilapia (Oreochromis niloticus). Transgenic Res 9(6):417–427

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Zeilmaker GH (1977) Cell lineage in retinal development of mice studied in experimental chimaeras. Nature 265:731–733

    Article  PubMed  CAS  Google Scholar 

  • Tan S-S, Williams EA, Tam PPL (1993) X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo. Nat Genet 3(6):170–174

    Article  PubMed  CAS  Google Scholar 

  • Velten J, Cakir C, Youn E, Chen J, Cazzonelli CI (2012) Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct. PLoS One 7(2):e30141

    Article  PubMed  CAS  Google Scholar 

  • Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, Martin DIK (1995) Enhancers increase the probability but not the level of gene-expression. Proc Natl Acad Sci USA 92(15):7125–7129. doi:10.1073/pnas.92.15.7125

    Article  PubMed  CAS  Google Scholar 

  • West JD (1975) A theoretical approach to the relation between patch size and clone size in chimaeric tissue. J Theor Biol 50:153–160

    Article  PubMed  CAS  Google Scholar 

  • West JD (1976) Clonal development of the retinal epithelium in mouse chimaeras and X-inactivation mosaics. J Embryol Exp Morphol 35:445–461

    Google Scholar 

  • West JD (1978) Analysis of clonal growth using chimaeras and mosaics. In: Johnson MH (ed) Development in mammals, vol 3. Elsevier, Amsterdam, pp 413–460

    Google Scholar 

  • West JD (2001) Genetic studies with mouse chimaeras. In: Reeve ECR (ed) Encyclopedia of genetics. Fitzroy Dearborn, London, pp 293–302

    Google Scholar 

  • Whitten WK (1978) Combinatorial and computer analysis of random mosaics. In: Russell LB (ed) Genetic mosaics and chimeras in mammals. Plenum Press, New York, pp 445–463

    Chapter  Google Scholar 

  • Wilkie AL, Jordan SA, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129(14):3349–3357

    PubMed  CAS  Google Scholar 

  • Williams A, Harker N, Ktistaki E, Veiga-Fernandes H, Roderick K, Tolaini M, Norton T, Williams K, Kioussis D (2008) Position effect variegation and imprinting of transgenes in lymphocytes. Nucleic Acids Res 36(7):2320–2329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at BRR, University of Edinburgh for expert animal husbandry and specialised technical services and Ronnie Grant for help with the illustrations. We are grateful to Springer Science+Business Media B.V. for permission to reproduce Fig. 3e, f. This work was supported, in part, by a Tenovus Scotland grant award (E04/6) to JDW and SDM; and BBSRC support to both MLO and CBAW. S-PC is grateful for an award from the University of Edinburgh Common Bursaries Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. West.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SP., Opsahl, M.L., Whitelaw, C.B.A. et al. Relative transgene expression frequencies in homozygous versus hemizygous transgenic mice. Transgenic Res 22, 1143–1154 (2013). https://doi.org/10.1007/s11248-013-9732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9732-5

Keywords

Navigation