Skip to main content
Log in

The new pig on the block: modelling cancer in pigs

  • Perspective
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The molecular mechanisms underlying many human cancers are now reasonably well understood. The challenge now is to bridge the gap between laboratory and clinical oncology, so these accomplishments can be translated into practical benefits for human patients. While genetically modified mice have played a prominent role in basic research, they are less suitable for many preclinical studies. Other animals can provide important complementary resources to aid the development, validation and application of new medicines and procedures. Powerful methods of genetic engineering have now been extended to physiologically more relevant species, particularly the pig, opening the prospect of more representative, genetically defined, cancer models at human scale. We briefly review the field and outline our program to generate gene-targeted pigs carrying mutations in tumour suppressor genes and proto-oncogenes that replicate key lesions responsible for a variety of human cancers. We also highlight some important issues for the future development and usefulness of porcine cancer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM (2007) Genetic induction of tumorigenesis in swine. Oncogene 26:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Anderson LJ, Jarrett WFH (1968) Lymphosarcoma (Leukemia) in cattle, sheep and pigs in Great Britain. Cancer 22:398–405

    Article  PubMed  CAS  Google Scholar 

  • Bendixen E, Danielsen M, Larsen K, Bendixen C (2010) Advances in porcine genomics and proteomics—a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics 9:208–219

    Article  PubMed  CAS  Google Scholar 

  • Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R, Besselsen DG, Godfrey VL, Doetschman T, Dove WF, Pitot HC, Halberg RB, Itzkowitz SH, Groden J, Coffey RJ (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124:762–777

    Article  PubMed  Google Scholar 

  • Borovansky J, Horak V, Elleder M, Fortyna K, Smit NP, Kolb AM (2003) Biochemical characterization of a new melanoma model—the minipig MeLiM strain. Melanoma Res 13:543–548

    Article  PubMed  Google Scholar 

  • Brown DG, Johnson DF (1970) Diseases of aged swine. J Am Vet Med Assoc 157:1914–1918

    PubMed  CAS  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  PubMed  CAS  Google Scholar 

  • Croner RS, Brueckl WM, Reingruber B, Hohenberger W, Guenther K (2005) Age and manifestation related symptoms in familial adenomatous polyposis. BMC Cancer 5:24

    Article  PubMed  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010). GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality worldwide. in IARC CancerBase, vol. 10. International Agency for Research on Cancer. Lyon, France

  • Fisher LF, Olander HJ (1978) Spontaneous neoplasm of pigs—a study of 31 cases. J Comp Path. 88:505–517

    Article  PubMed  CAS  Google Scholar 

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6:e21045. doi:10.1371/journal.pone.0021045

    Article  PubMed  CAS  Google Scholar 

  • Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X, Kurome M, Zakhartchenko V, Kessler B, Wieland H, Rottmann O, Schmid RM, Schneider G, Kind A, Wolf E, Saur D, Schnieke A (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143:1173–1175

    Article  PubMed  CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  • Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  PubMed  CAS  Google Scholar 

  • Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223:116–126

    Article  PubMed  CAS  Google Scholar 

  • Greene JF Jr, Morgan CD, Rao A, Amoss MS Jr, Arguello F (1997) Regression by differentiation in the Sinclair swine model of cutaneous melanoma. Melanoma Res 7:471–477

    Article  PubMed  Google Scholar 

  • Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600

    Article  PubMed  CAS  Google Scholar 

  • Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398

    Article  PubMed  CAS  Google Scholar 

  • Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo J, Belani J, Maxwell K, Lieber D, Talcott M, Baron P, Ames C, Venkatesh R, Landman J (2005) Development of exophytic tumor model for laparoscopic partial nephrectomy: technique and initial experience. Urology 65:872–876

    Article  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  • Hooper ML (1998) Tumour suppressor gene mutations in humans and mice: parallels and contrasts. EMBO J 17:6783–6789

    Article  PubMed  CAS  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER cancer statistics review, 1975–2008. In: Surveillance Epidemiology and End Results. National Cancer Institute, Bethesda, MD

    Google Scholar 

  • Huang G, Tong C, Kumbhani DS, Ashton C, Yan H, Ying QL (2011) Beyond knockout rats: new insights into finer genome manipulation in rats. Cell Cycle 10:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S et al (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kaitin KI (2010) Deconstructing the drug development process: the new face of innovation. Clin Pharmacol Therapeut 87:356–361

    Article  CAS  Google Scholar 

  • Kendall SD, Linardic CM, Adam SJ, Counter CM (2005) A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65:9824–9828

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665

    Article  PubMed  CAS  Google Scholar 

  • Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M, Durkovic M, Rezaei N, Kurome M, Zakhartchenko V, Kessler B, Flisikowski K, Kind A, Wolf E, Schnieke A (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS ONE 7:e43323. doi:10.1371/journal.pone.0043323

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhou X, Guan Y, Wang YX, Scutt D, Gong QY (2006) N-nitrosodiethylamine-induced pig liver hepatocellular carcinoma model: radiological and histopathological studies. Cardiovasc Intervent Radiol 29:420–428

    Article  PubMed  Google Scholar 

  • Luo Y, Bolund L, Sorensen CB (2011) High efficiency of BRACA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20:975–988

    Article  PubMed  CAS  Google Scholar 

  • Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894

    Article  PubMed  CAS  Google Scholar 

  • McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res 19:869–887

    Article  PubMed  CAS  Google Scholar 

  • McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Midgley CA, Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Mittra J, Tait J (2012) Analysing stratified medicine business models and value systems: innovation–regulation interactions. N Biotechnol 15:709–719

    Article  Google Scholar 

  • Mussolino C, Cathomen T (2013) RNA guides genome engineering. Nat Biotechnol 31:208–209

    Article  CAS  Google Scholar 

  • N’Djin WA, Melodelima D, Parmentier H, Rivoire M, Chapelon JY (2007) A tumor-mimic model for evaluating the accuracy of HIFU preclinical studies: an in vivo study. Conf Proc IEEE Eng Med Biol Soc 2007:3544–3547

  • Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10:428–438

    Article  PubMed  CAS  Google Scholar 

  • Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156

    Article  PubMed  CAS  Google Scholar 

  • Pathak S, Multani AS, McConkey DJ, Imam AS, Amoss MS (2000) Spontaneous regression of cutaneous melanoma in Sinclair swine is associated with defective telomerase activity and extensive telomere erosion. Int J Oncol 17:1219–1224

    PubMed  CAS  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–183

    Article  PubMed  CAS  Google Scholar 

  • Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wünsch A, Kessler B, Kurome M, Bähr A, Klymiuk N, Krebs S, Puk O, Nagashima H, Graw J, Blum H, Wanke R, Wolf E (2013) Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62:1505–1511

    Article  PubMed  CAS  Google Scholar 

  • Scharek L, Tedin K (2007) The porcine immune system-differences compared to man and mouse and possible consequences for infections by Salmonella serovars. Berl Munch Tierarztl Wochenschr 120:347–354

    PubMed  CAS  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  PubMed  CAS  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Weihong Xu et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507–3512

    Article  PubMed  CAS  Google Scholar 

  • Stevenson RG, DeWitt WF (1973) An unusual case of lymphosarcoma in a pig. Can Vet 14:139–141

    CAS  Google Scholar 

  • Swindle MM (2007). Swine in the laboratory: Surgery, anesthesia, imaging, and experimental techniques. Pub CRC press, Boca Raton, FL, USA

  • van Boxtel R, Kuiper RV, Toonen PW, van Heesch S, Hermsen R et al (2011) Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am J Pathol 179:1616–1622

    Article  PubMed  Google Scholar 

  • Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7:659–672

    Article  PubMed  CAS  Google Scholar 

  • Vincent-Naulleau S, Le Chalony C, Leplat JJ, Bouet S, Bailly C, Spatz A, Vielh P, Avril MF, Tricaud Y, Gruand J, Horak V, Frelat G, Geffrotin C (2004) Clinical and histopathological characterization of cutaneous melanomas in the melanoblastoma-bearing Libechov minipig model. Pigment Cell Res 17:24–35

    Article  PubMed  Google Scholar 

  • Yamakawa H, Nagai T, Harasawa R, Yamagami T, Takahashi J, Ishikawa K-I, Nomura N, Nagashima H (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118

    Article  CAS  Google Scholar 

  • Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Schnieke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flisikowska, T., Kind, A. & Schnieke, A. The new pig on the block: modelling cancer in pigs. Transgenic Res 22, 673–680 (2013). https://doi.org/10.1007/s11248-013-9720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9720-9

Keywords

Navigation