Skip to main content

Importance of Animal Models in the Field of Cancer Research

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research
  • 24 Accesses

Abstract

Cancer has traditionally been the center of human interest all around the world, making it a medical research hotspot. Animal models are categorized based on the method used to induce cancer in the animal. The mouse has been the standard animal model for fundamental and preclinical cancer research, although other species, such as zebrafish, serve essential and complementary roles as cancer research models. A number of treatments, including chemical or physical mutagenesis, viral infection, transgene insertion, homologous recombination, and the recently established gene edition, have resulted in genetically altered mouse and zebrafish cancer models. As research advances, the methods for creating cancer animal models become increasingly diversified, including chemical induction, xenotransplantation, gene programming, and so forth. The introduction of genetically engineered animal models has greatly aided in the understanding of the illness. Animal models can be utilized not only to study the biochemical and physiological mechanisms of cancer incidence and progression in objects but also for cancer medication screening and gene therapy research. Animal models are useful for researching the biology and genetics of human malignancies, as well as for preclinical research into anti-cancer medicines and cancer prevention. Major strides have been achieved in the development of animal models of cancer, which have become increasingly complex via the use of new technologies and the incorporation of clinical data from patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adler S (1948) Origin of the golden hamster Cricetusauratus as a laboratory animal. Nature 162(4111):256–257

    Article  CAS  PubMed  Google Scholar 

  • Alworth LC, Harvey SB (2012) Chinchillas. Anatomy, physiology and behaviour. The laboratory rabbit, guinea pig, hamster, and other rodents, American College of Laboratory Animal Medicine series, 1st edn. Academic (Elsevier), San Diego, pp 955–965

    Google Scholar 

  • Alworth LC, Vazquez VM (2009) A novel system for individually housing bullfrogs. Lab Anim 38(10):329–333

    Article  Google Scholar 

  • Arslan H, Ketani A, Gezici A, Kapukaya A, Necmioglu S, Kesemenli C, Subasi M (2003) The effects of osteoporosis on distraction osteogenesis: an experimental study in an ovariectomised rabbit model. Actaorthopaedicabelgica 69(1):67–73

    CAS  Google Scholar 

  • Austad SN (1997) Birds as models of aging in biomedical research. ILAR J 38(3):137–140

    Article  PubMed  Google Scholar 

  • Austad SN (2011) Candidate bird species for use in aging research. ILAR J 52(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Bacon LD, Hunt HD, Cheng HH (2000) A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult Sci 79(8):1082–1093

    Article  CAS  PubMed  Google Scholar 

  • Bähr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47:59–71

    Article  PubMed  Google Scholar 

  • Balamayooran G, Pena M, Sharma R, Truman RW (2015) The armadillo as an animal model and reservoir host for Mycobacterium leprae. Clin Dermatol 33(1):108–115

    Article  PubMed  Google Scholar 

  • Ball GF, Balthazart J (2010) Japanese quail as a model system for studying the neuroendocrine control of reproductive and social behaviors. ILAR J 51(4):310–325

    Article  CAS  PubMed  Google Scholar 

  • Barut BA, Zon LI (2000) Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2(2):49–51

    Article  CAS  PubMed  Google Scholar 

  • Bateson M, Feenders G (2010) The use of passerine bird species in laboratory research: implications of basic biology for husbandry and welfare. ILAR J 51(4):394–408

    Article  CAS  PubMed  Google Scholar 

  • Benavides F, Guenet JL (2001) Murine models for human diseases. Medicina 61(2):215–231

    CAS  PubMed  Google Scholar 

  • Bernards A, Hariharan IK (2001) Of flies and men – studying human disease in Drosophila. Curr Opin Genet Dev 11(3):274–278

    Article  CAS  PubMed  Google Scholar 

  • Blickstein I, Keith LG (2007) On the possible cause of monozygotic twinning: lessons from the 9-banded armadillo and from assisted reproduction. Twin Res Hum Genet 10(2):394–399

    Article  PubMed  Google Scholar 

  • Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. ILAR J 48(3):260–269

    Article  CAS  PubMed  Google Scholar 

  • Butler MP, Turner KW, Zucker I (2008) A melatonin-independent seasonal timer induces neuroendocrine refractoriness to short day lengths. J Biol Rhythm 23(3):242–251

    Article  CAS  Google Scholar 

  • Cekanova M, Rathore K (2014) Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther 8:1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Champneys F (1874) The septum atriorum of the frog and the rabbit. J Anat Physiol 8(Pt 2):340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Phytopathol 6:95–119

    Article  CAS  Google Scholar 

  • Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, Kwon JY, Lee C, Park H (2016) An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells 39(2):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey DS, Isaacs JT (1980) Requirements for an idealized animal model of prostatic cancer. Prog Clin Biol Res 37:379–391

    CAS  PubMed  Google Scholar 

  • Colby LA, Nowland MH, Kennedy LH (2019) Clinical laboratory animal medicine: an introduction. John Wiley & Sons, Wiley, Chichester UK.

    Google Scholar 

  • Cracraft J, Houde P, Ho SY, Mindell DP, Fjeldså J, Lindow B, Edwards SV, Rahbek C, Mirarab S, Warnow T, Gilbert MTP (2015) Response to comment on “whole-genome analyses resolve early branches in the tree of life of modern birds”. Science 349(6255):1460–1460

    Article  CAS  PubMed  Google Scholar 

  • Creaser CW (1934) The technic of handling the zebra fish (Brachydaniorerio) for the production of eggs which are favorable for embryological research and are available at any specified time throughout the year. Copeia 1934(4):159–161

    Article  Google Scholar 

  • Dickenson V (2013) Rabbit. Reaktion Books, Chicago USA.

    Google Scholar 

  • Dictionary OE (1989) Oxford English dictionary. Simpson JA, Weiner ESC

    Google Scholar 

  • Ema M, Naya M, Yoshida K, Nagaosa R (2010) Reproductive and developmental toxicity of hydrofluorocarbons used as refrigerants. Reprod Toxicol 29(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Enforcement R (1989) Animal welfare enforcement fiscal year 1988: report of the secretary of agriculture to the President of the Senate and the Speaker of the House of Representatives

    Google Scholar 

  • Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4(1):21–40

    Article  PubMed  Google Scholar 

  • Fee MS, Scharff C (2010) The songbird as a model for the generation and learning of complex sequential behaviors. ILAR J 51(4):362–377

    Article  CAS  PubMed  Google Scholar 

  • Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Franco NH (2013) Animal experiments in biomedical research: a historical perspective. Animals 3(1):238–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Gresham VC, Haines VL (2012) Management, husbandry, and colony health. In: The laboratory rabbit, guinea pig, hamster, and other rodents. Academic, pp 603–619, Cambridge USA.

    Google Scholar 

  • Hanly WC, Artwohl JE, Bennett BT (1995) Review of polyclonal antibody production procedures in mammals and poultry. ILAR J 37(3):93–118

    Article  PubMed  Google Scholar 

  • Harding CF (2004) Learning from bird brains: how the study of songbird brains revolutionized neuroscience. Lab Anim 33(5):28–33

    Article  Google Scholar 

  • Hardy C, Callou C, Vigne JD, Casane D, Dennebouy N, Mounolou JC, Monnerot M (1995) Rabbit mitochondrial DNA diversity from prehistoric to modern times. J Mol Evol 40(3):227–237

    Article  CAS  PubMed  Google Scholar 

  • Harkness JE, Turner PV, VandeWoude S, Wheler CL (2010) Harkness and Wagner’s biology and medicine of rabbits and rodents. Wiley, New Jersey USA.

    Google Scholar 

  • Hau J, Schapiro SJ, Van Hoosier Jr GL (2002) Handbook of laboratory animal science: animal models, vol II. CRC Press, Florida

    Google Scholar 

  • Hein GJ, Baker C, Hsieh J, Farr S, Adeli K (2013) GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2–stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62(2):373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriksen CF (2005) The ethics of research involving animals: a review of the Nuffield Council on Bioethics report from a three Rs perspective. Altern Lab Anim 33(6):659–662

    Article  CAS  PubMed  Google Scholar 

  • Hesse BE, Potter B (2004) A behavioral look at the training of Alex: a review of Pepperberg’s the Alex studies: cognitive and communicative abilities of grey parrots. Anal Verbal Behav 20(1):141–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickman DL, Johnson J, Vemulapalli TH, Crisler JR, Shepherd R (2017) Commonly used animal models. In: Principles of animal research for graduate and undergraduate students. p 117, Academic press, Cambridge USA

    Google Scholar 

  • Horton L (1989) Commentary: the enduring animal issue. J Natl Cancer Inst 81:736–743

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 46(7446):498–503

    Article  CAS  Google Scholar 

  • Jiménez JE (1996) The extirpation and current status of wild chinchillas Chinchilla lanigera and C. brevicaudata. Biol Conserv 77(1):1–6

    Article  Google Scholar 

  • Kaiser P (2012) The long view: a bright past, a brighter future? Forty years of chicken immunology pre-and post-genome. Avian Pathol 41(6):511–518

    Article  CAS  PubMed  Google Scholar 

  • Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836

    Article  CAS  PubMed  Google Scholar 

  • Kerby JL, Hart AJ, Storfer A (2011) Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystomatigrinum). EcoHealth 8(1):46–54

    Article  PubMed  Google Scholar 

  • Khaled WT, Liu P (2014) Cancer mouse models: past, present and future. In: Seminars in cell & developmental biology, vol 27. Academic, pp 54–60, USA

    Google Scholar 

  • Koustubhan P, Sorocco D, Levin MS (2008) Establishing and maintaining a Xenopuslaevis colony for research laboratories. In: Sourcebook of models for biomedical research. Humana Press, pp 139–160, New Jersey USA

    Google Scholar 

  • Laale HW (1977) The biology and use of zebrafish, Brachydaniorerio in fisheries research. A literature review. J Fish Biol 10(2):121–173

    Article  Google Scholar 

  • LaFollette H, Shanks N (2020) Brute science: dilemmas of animal experimentation. Routledge, Oxfordshire, England UK

    Google Scholar 

  • Lovern MB, Holmes MM, Wade J (2004) The green anole (Anoliscarolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior. ILAR J 45(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • McClure MM, McIntyre PB, McCune AR (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J Fish Biol 69(2):553–570

    Article  Google Scholar 

  • Miele M (2016) Killing animals for food: how science, religion and technologies affect the public debate about religious slaughter. Food Ethics 1(1):47–60

    Article  Google Scholar 

  • Morton DJ, Hempel RJ, Seale TW, Whitby PW, Stull TL (2012) A functional tonB gene is required for both virulence and competitive fitness in a chinchilla model of Haemophilusinfluenzae otitis media. BMC Res Notes 5(1):1–7

    Article  CAS  Google Scholar 

  • O’Rourke DP (2007) Amphibians used in research and teaching. ILAR J 48(3):183–187

    Article  PubMed  Google Scholar 

  • O’Rourke DP, Lertpiriyapong K (2015) Biology and diseases of reptiles. In: Laboratory animal medicine. Academic, pp 967–1013

    Chapter  Google Scholar 

  • Oi A, Morishita K, Awogi T, Ozaki A, Umezato M, Fujita S, Hosoki E, Morimoto H, Ishiharada N, Ishiyama H, Uesugi T (2011) Nonclinical safety profile of tolvaptan. Cardiovasc Drugs Ther 25(1):91–99

    Article  CAS  Google Scholar 

  • Oparin AI (1957) The origin of life on the earth. The origin of life on the earth, 3rd edn

    Google Scholar 

  • Padilla-Carlin DJ, McMurray DN, Hickey AJ (2008) The guinea pig as a model of infectious diseases. Comp Med 58(4):324–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peña JL, DeBello WM (2010) Auditory processing, plasticity, and learning in the barn owl. ILAR J 51(4):338–352

    Article  PubMed  Google Scholar 

  • Pough FH (1991) Recommendations for the care of amphibians and reptiles in academic institutions. ILAR J 33(4):S1–S21

    Article  Google Scholar 

  • Pritt S (2012) Guinea pigs: taxonomy and history. The laboratory rabbit, guinea pig, hamster and other rodents. Elsevier, San Diego, pp 563–575

    Book  Google Scholar 

  • Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X (2014) Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopuslaevisfroglets and comparison to axolotl. BMC Dev Biol 14(1):1–27

    Article  CAS  Google Scholar 

  • Rappuoli R (2014) Inner workings: 1885, the first rabies vaccination in humans. Proc Natl Acad Sci 111(34):12273–12273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan T (2004) The case for animal rights. Univ of California Press, USA

    Google Scholar 

  • Ronisz A, Delcroix M, Quarck R (2013) Measurement of right ventricular pressure by telemetry in conscious moving rabbits. Lab Anim 47(3):184–193

    Article  CAS  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, North Yorkshire, UK

    Google Scholar 

  • Schmidt MF (2010) An IACUC perspective on songbirds and their use in neurobiological research. ILAR J 51(4):424

    Article  CAS  PubMed  Google Scholar 

  • Sechzer JA (1983) The role of animals in biomedical research

    Google Scholar 

  • Seidl AH, Sanchez JT, Schecterson L, Tabor KM, Wang Y, Kashima DT, Poynter G, Huss D, Fraser SE, Lansford R, Rubel EW (2013) Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem. J Comp Neurol 521(1):5–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiomi M, Ito T (2009) The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: a tribute to the late Dr. Yoshio Watanabe. Atherosclerosis 207(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev 83(1):13–34

    Article  PubMed  Google Scholar 

  • Suckow MA, Stevens KA, Wilson RP (eds) (2012) The laboratory rabbit, guinea pig, hamster, and other rodents. Academic

    Google Scholar 

  • Svendsen P, Hau J (1994) Handbook of laboratory animal science (No.Sirsi) i9780849343780), CRC press, Florida

    Google Scholar 

  • Teicher BA, Andrews PA (2004) Anticancer drug development guide; preclinical screening, clinical trials, and approval, 2nd edn. Humana Press, Totowa, pp 99–123

    Google Scholar 

  • U.S. Congress (1986) Office of Technology Assessment. Alternatives to animal use in research, testing, and education. US Government Printing Office, Washington, DC. OTA-BA-273.1986. http://govinfo.library.unt.edu/ota/Ota_3/DATA/1986/8601.PDF. Accessed 3 July 2014

  • Wahl-Jensen V, Bollinger L, Safronetz D, Kok-Mercado D, Scott DP, Ebihara H (2012) Use of the Syrian hamster as a new model of ebola virus disease and other viral hemorrhagic fevers. Viruses 4(12):3754–3784

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Chettinad Academy of Research and Education and Tecnologico de Monterrey, School of Engineering and Sciences, San Pablo, Mexico, for the facilities. We would also like to thank the Science and Engineering Research Board (SERB), Government of India for providing the grant (Grant number: EMR/2017/001877) to Surajit Pathak.

Author Contributions

Conceptualization and revision of manuscript – SP, AB and SP; Writing (Original draft preparation and editing) – DD; Reviewing/Editing of the manuscript – SP, SP, DD; Pictorial representation – DD. All authors approved the content of the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Declarations

No animal and human data are involved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surajit Pathak or Sujay Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, D., Banerjee, A., Pathak, S., Paul, S. (2022). Importance of Animal Models in the Field of Cancer Research. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics