Skip to main content
Log in

New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We constructed three different fibroin H-chain expression systems to estimate the efficacy of producing recombinant proteins in the cocoon of transgenic silkworms. The results showed that the three different EGFP/H-chain fusion genes were all expressed selectively in the posterior silk gland of the transgenic silkworm. The recombinant protein content of transgenic silkworm cocoons is up to 15% (w/w) when using the most highly efficient H-chain expression system. To our knowledge, in comparison with silkworm silk gland expression systems in the literature, the highly efficient expression system developed in this study is the most efficient silkworm silk gland expression system to date. This expression system is the best candidate for foreign gene production and for creation of novel functional silk material. The results suggested the N-terminal domain and the intron of the H-chain gene are important in the secretion of fibroin and its transcription, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  • Chevillard M, Couble P, Prudhomme JC (1986a) Complete nucleotide sequence of the gene encoding the Bombyx mori silk protein P25 and predicted amino acid sequence of the protein. Nucleic Acids Res 14:341–6342

    Article  Google Scholar 

  • Chevillard M, Deleage G, Couble P (1986b) Amino acid sequence and putative conformational characteristics of the 25 kD silk protein of Bombyx mori. Sericologia 26:435–449

    Google Scholar 

  • Craig CL, Riekel C (2002) Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp Biochem Physiol B Biochem Mol Biol 133:493–507

    Article  PubMed  Google Scholar 

  • Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27:5715–5724

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Tanaka K, Tanaka H, Ohtomo K, Kanda T, Imamura M, Quan GX, Kojima K, Yamashita T, Nakajima T, Taira H, Tamura T, Mizuno S (2004) Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of alpha1, 2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur J Biochem 271:356–366

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35:51–59

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976–980

    Article  CAS  PubMed  Google Scholar 

  • Martinez L, Almagro JC, Coll JL, Herrera RJ (2004) Sequence variability in the fibroin-H intron of domesticated and wild silk moths. Insect Biochem Mol Biol 34:343–352

    Article  CAS  PubMed  Google Scholar 

  • Michal CA, Simmons AH, Chew BG, Zax DB, Jelinski LW (1996) Presence of phosphorus in Nephila clavipes dragline silk. Biophys J 70:489–493

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544

    Article  CAS  PubMed  Google Scholar 

  • Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–472

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:248–353

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecule cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shimura K (1983) Chemical composition and biosynthesis of silk proteins. Experimentia 39:455–461

    Article  CAS  Google Scholar 

  • Takei F, Oyama F, Kimura K, Hyodo A, Mizuno S, Shimura K (1984) Reduced level of secretion and absence of subunit combination for the fibroin synthesized by a mutant silkworm, Nd(2). J Cell Biol 99:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180

    Article  CAS  PubMed  Google Scholar 

  • Takiya S, Kokubo H, Suzuki Y (1997) Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem J 321:645–653

    CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999a) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999b) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Suzuki Y (1979) Structural analysis of the fibroin gene at the 5′ end and its surrounding regions. Cell 16:425–436

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Hyodo A, Takei F, Sasaki H, Ohshima Y, Shimura K (1984) Sequence polymorphisms in the 5’-upstream region of the fibroin H-chain gene in the silkworm, Bombyx mori. Gene 28:241–248

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Mizuno S, Shimura K (1985) Sequence polymorphisms around the 5′-end of the silkworm fibroin H-chain gene suggesting the occurrence of crossing-over between heteromorphic alleles. Gene 34:351–355

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Asakawa S, Shimizu N, Kawasaki S, Yasukochi Y (1999) Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori. Mol Gen Genet 261:698–706

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Kikuchi Y, Takagi T, Kikuchi A, Oyama F, Shimura K, Mizuno S (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487–3492

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Henzel WJ (2004) Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci 13:2819–2824

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Aso Y, Yamamoto K, Banno Y, Wang Y, Tsuchida K, Kawaguchi Y, Fujii H (2006) Proteome analysis of silk gland proteins from the silkworm, Bombyx mori. Proteomics 6:2586–2599

    Article  CAS  PubMed  Google Scholar 

  • Zhao AC, Lu C, Li B, Pu XY, Zhou ZY, Xiang ZH (2004) Construction of AFLP molecular markers linkage map and localization of green cocoon gene in silkworm (Bombyx mori). Acta Genetica Sinica 31:787–794

    CAS  PubMed  Google Scholar 

  • Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Hi-Tech Research and Development (863) Program of China (2006AA10A117), China Postdoctoral Science Foundation Funded Project (No. 20070420722 and 200801221), the Fund for Foreign Scholars in University Research and Teaching Programs (No. B07045). Aichun Zhao designed and performed the research, analyzed the data and wrote the paper. Tianfu Zhao and Yuansong Zhang helped in the preparation for microinjection. Qingyou Xia, Cheng Lu, Zeyang Zhou, and Masao Nakagaki, received some financial aid for the research. Zhonghuai Xiang provided the majority of the financial aid for the research. All vectors and/or transgenic animals described in this paper can be obtained from the corresponding author (Aichun Zhao).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aichun Zhao or Zhonghuai Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, A., Zhao, T., Zhang, Y. et al. New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19, 29–44 (2010). https://doi.org/10.1007/s11248-009-9295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9295-7

Keywords

Navigation