Skip to main content
Log in

Testing coexistence and genetic containment for an autogamous crop

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Is there any risk that the threshold for admixture of genetically modified seeds in the harvest of a conventional cultivar, 0.9% in Europe, will be exceeded in the case of inbreeder crops? Using herbicide-resistant foxtail millet, Setaria italica, as a model of a preferentially autogamous crop, such as wheat and rice, field experiments show that genotype admixture due to pollen flow between adjacent fields is about 0.03% on average for the 10 adjacent meters, and 10 times less in the next 20-m lane. In the case of a maternally inherited resistance gene, the admixture rate is at least 100 times lower. Recessive herbicide resistance has also been tested but would be efficient only if the agreed coexistence rules were based on phenotype detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823. doi:10.1111/j.1365-313X.2007.03278.x

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586. doi:10.1038/nbt0602-581

    Article  PubMed  CAS  Google Scholar 

  • Darmency H (1994) Genetics of herbicide resistance in weeds and crops. In: Powles SB, Holtum JA (eds) Herbicide resistance in plants: biology and biochemistry. Lewis, Boca Raton, pp 263–297

    Google Scholar 

  • Darmency H, Pernès J (1985) Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res 25:175–179. doi:10.1111/j.1365-3180.1985.tb00633.x

    Article  CAS  Google Scholar 

  • Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet (Setaria italica (L.) P. Beauv.). Theor Appl Genet 118:821–829. doi:10.1007/s00122-008-0942-9

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24:109–114. doi:10.1016/j.tibtech.2006.01.006

    Article  PubMed  CAS  Google Scholar 

  • Loureiro I, Escorial MC, Garcia-Baudin JM, Gonzalez-Andujar JL, Chueca MC (2007) Wheat pollen dispersal under semi-arid field conditions: potential outcrossing with Triticum aestivum and Triticum turgidum. Euphytica 156:25–37. doi:10.1007/s10681-006-9345-7

    Article  Google Scholar 

  • Matus-Cadiz MA, Hucl P, Dupuis B (2007) Pollen-mediated gene flow in wheat at the commercial scale. Crop Sci 47:573–581

    Article  CAS  Google Scholar 

  • Messéan A, Angevin F, Gómez-Barbero M, Menrad K, Rodríguez-Cerezo M (2006) New cases studies on the coexistence of GM and non-GM crops in European agriculture. Technical Report EUR 22102 EN, Eur Com

  • Messeguer J, Fogher C, Guiderdoni E, Marfà V, Català MM, Baldi G, Melé E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor Appl Genet 103:1151–1159. doi:10.1007/s001220100713

    Article  CAS  Google Scholar 

  • Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173:346–353. doi:10.1111/j.1469-8137.2006.01906.x

    Article  PubMed  Google Scholar 

  • Sabba RP, Ray IM, Lownds N, Sterling TM (2003) Inheritance of resistance to clopyralid and picloram in yellow starthistle (Centaurea solstitialis L.) is controlled by a single nuclear recessive gene. J Hered 94:523–527. doi:10.1093/jhered/esg101

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975. doi:10.1534/genetics.108.092809

    Article  PubMed  Google Scholar 

  • Shivrain VK, Burgos NR, Anders MM, Rajguru SN, Moore J, Sales MA (2007) Gene flow between Clearfield™ rice and red rice. Crop Prot 26:349–356. doi:10.1016/j.cropro.2005.09.019

    Article  CAS  Google Scholar 

  • Waines JG, Hedge SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

    Google Scholar 

  • Wang T, Darmency H (1997) Inheritance of sethoxydim resistance in foxtail millet, Setaria italica (L.) Beauv. Euphytica 94:69–73. doi:10.1023/A:1002989725995

    Article  Google Scholar 

  • Wang T, Fleury A, Ma J, Darmency H (1996) Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered 87:423–426

    CAS  Google Scholar 

  • Wang T, Chen HB, Reboud X, Darmency H (1997) Pollen-mediated gene flow in an autogamous crop: Foxtail millet (Setaria italica). Plant Breed 116:579–583. doi:10.1111/j.1439-0523.1997.tb02193.x

    Article  Google Scholar 

  • Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor Appl Genet 108:315–320. doi:10.1007/s00122-003-1424-8

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura Y, Matsuo K, Yasuda K (2006) Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environ Biosafety Res 5:169–173. doi:10.1051/ebr:2007003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Z. Zhao and the millet research group of Zhangjiakou Institute of Agriculture Sciences for advice and field experiment assistance. This research was supported by the European Commission contract INCO-DC (no. ERB-IC18-CT-98-0391) and a consecutive project from the Chinese Ministry Of Science and Technology (grants no. 2004BA525B04 and 2006BAD13B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Darmency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Shi, Y., Li, Y. et al. Testing coexistence and genetic containment for an autogamous crop. Transgenic Res 18, 809–813 (2009). https://doi.org/10.1007/s11248-009-9270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9270-3

Keywords

Navigation