Skip to main content
Log in

Transplastomic expression of bacterial l-aspartate-α-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Metabolic engineering for β-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli l-aspartate-α-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of l-aspartate to generate β-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. β-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45°C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO2 assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30–40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the β-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert A, Dhanaraj V, Genschel U, Khan G, Ramjee MK, Pulido R, Sibanda BL, Delft F, Witty M, Blundel TL, Smith AG, Abell C (1998) Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nat Struct Biol 5:289–293. doi:10.1038/nsb0498-289

    Article  PubMed  CAS  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    PubMed  CAS  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    Article  CAS  Google Scholar 

  • Cronan JE Jr (1980) β-Alanine synthesis in Escherichia coli. J Bacteriol 141:1291–1297

    PubMed  CAS  Google Scholar 

  • Daniell H (1997) Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol Biol 62:453–488

    Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or Mn. Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1

    Article  CAS  Google Scholar 

  • Fouad WM, Rathinasabapathi B (2006) Expression of bacterial l-aspartate-alpha-decarboxylase in tobacco increases beta-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505. doi:10.1007/s11103-005-4844-9

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089. doi:10.1093/nar/19.15.4083

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyl-cycle pigments. Planta 198:324–333. doi:10.1007/BF00620047

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. doi:10.1104/pp.104.052142

    Article  PubMed  CAS  Google Scholar 

  • Klapheck S, Zopes H, Levels HG, Bergmann L (1988) Properties and localization of the homoglutathione synthetase from Phaseolus coccineus leaves. Physiol Plant 74:733–739. doi:10.1111/j.1399-3054.1988.tb02045.x

    Article  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845. doi:10.1073/pnas.96.5.1840

    Article  PubMed  CAS  Google Scholar 

  • Kouril R, Lazár D, Ilík P, Skotnica J, Krchnák P, Naus J (2004) High temperature-induced chlorophyll fluorescence rise in plants at 40–50°C: experimental and theoretical approach. Photosynth Res 81:49–66. doi:10.1023/B:PRES.0000028391.70533.eb

    Article  PubMed  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–181. doi:10.1104/pp.120.1.173

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313. doi:10.1146/annurev.arplant.55.031903.141633

    Article  PubMed  CAS  Google Scholar 

  • Mayer RR, Cherry JH, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94:796–810. doi:10.1104/pp.94.2.796

    Article  PubMed  CAS  Google Scholar 

  • Mehta AD, Seidler NW (2005) Beta-alanine suppresses heat inactivation of lactate dehydrogenase. J Enzym Inhib Med Chem 20:199–203. doi:10.1080/14756360400020538

    Article  CAS  Google Scholar 

  • Merkel WK, Nichols BP (1996) Characterization and sequence of the Escherichia coli panBCD gene cluster. FEMS Microbiol Lett 143:247–252. doi:10.1111/j.1574-6968.1996.tb08488.x

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin IJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules: cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392. doi:10.1104/pp.124.3.1381

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pospísil P, Tyystjärvi E (1999) Molecular mechanism of high temperature-induced inhibition of acceptor side of photosystem II. Photosynth Res 32:55–66. doi:10.1023/A:1006369009170

    Article  Google Scholar 

  • Raman SB, Rathinasabapathi B (2003) Beta-alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant beta-alanine betaine. Plant Physiol 132:1642–1651. doi:10.1104/pp.103.020453

    Article  PubMed  CAS  Google Scholar 

  • Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167:961–968

    Article  CAS  Google Scholar 

  • Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli l-aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669

    PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Sigua CA, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-l-methionine dependent N-methylation of β-alanine to its betaine is via N-methyl and N, N-dimethyl β-alanines. Physiol Plant 109:225–231. doi:10.1034/j.1399-3054.2000.100302.x

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae: purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126:1241–1249. doi:10.1104/pp.126.3.1241

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi:10.1104/pp.103.033431

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064. doi:10.1104/pp.010357

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY, 1659 p. ISBN 0-87969-3096

  • SAS Institute Inc (2005) Version 9.1, SAS Institute Inc., Cary, NC, USA

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725--735

    Article  CAS  Google Scholar 

  • Sharkry TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277. doi:10.1111/j.1365-3040.2005.01324.x

    Article  Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129. doi:10.1016/j.envexpbot.2004.01.010

    Article  CAS  Google Scholar 

  • Srivastava A, Guissé B, Greppin U, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106. doi:10.1016/S0005-2728(97)00017-0

    Article  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917. doi:10.1073/pnas.90.3.913

    Article  PubMed  CAS  Google Scholar 

  • Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060. doi:10.1104/pp.104.050054

    Article  PubMed  CAS  Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de nova pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800. doi:10.1074/jbc.M009804200

    Article  PubMed  CAS  Google Scholar 

  • Williamson JM, Brown GM (1979) Purification and properties of l-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli. J Biol Chem 254:8074–8082

    PubMed  CAS  Google Scholar 

  • Wong Y, Taylor DE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750

    Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–933. doi:10.1007/s00425-006-0380-3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Altpeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouad, W.M., Altpeter, F. Transplastomic expression of bacterial l-aspartate-α-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res 18, 707–718 (2009). https://doi.org/10.1007/s11248-009-9258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9258-z

Keywords

Navigation