Skip to main content
Log in

Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EPSPS:

5-Enolpyruvyl-shikimate-3-phosphate synthase

PCR:

Polymerase chain reaction

CTAB:

Cetyl trimethyl ammonium bromide

BSA:

Bovine serum albumin

References

  • Aionesei T, Hosp J, Voronin V, Heberle-Bors E (2006) Methotrexate is a new selectable marker for tobacco immature pollen transformation. Plant Cell Rep 25:410–416

    Article  PubMed  CAS  Google Scholar 

  • Booy G, Krens FA, Huizing HJ (1989) Attempted pollen-mediated transformation of maize. J Plant Physiol 135:319–324

    CAS  Google Scholar 

  • Boulter ME, Croy E, Simpson P, Shields R, Croy RDD, Shirsat AH (1990) Transformation of Brassica napus L.(oilseed rape) using Agrobaterium tumefaciens and Agrobacterium rhizogenes—a comparison. Plant Sci 70:91–99

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls segment explants. Plant Cell Rep 21:599–604

    PubMed  CAS  Google Scholar 

  • Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium mediated transformation of thin cell layer exlplants from Brassica napus. Theor Appl Genet 75:438–445

    Article  Google Scholar 

  • Cheng XY, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1992) Genetic-transformation of crop plants using microprojectile bombardment. Plant J 2:275–281

    Article  CAS  Google Scholar 

  • Christou P (1995) Particle bombardment. Methods Cell Biol 50:375–382

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744

    Article  CAS  Google Scholar 

  • Dong J, Kharb P, Teng W, Hall TC ( 2001) Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol Breeding 7:187–194

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JJ (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15

    Google Scholar 

  • Fukuoka H, Ogawa T, Mitsuhara I, Iwai T, Isuzigawa K, Nishizawa Y, Gotoh Y, Nishizawa Y, Tagiri A, Ugaki M, Ohshiama M, Yano H, Murai N, Niwa Y, Hibi T, Ohashi Y (2000) Agrobacterium-mediated transformation of monocot and dicot plants using the NCR promoter derived from soybean chlorotic mottle virus. Plant Cell Rep 19:815–820

    Article  CAS  Google Scholar 

  • Girijashankar V, Sharna HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Guan C, Wang G, Chen S, Li X, Lin L (2001) Breeding and agronomic characters of Bt transgenic insect-resistant Brassica napus lines. Cruciferae Newsl 23:43–44

    Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • He M, Yang ZY, Nie YF, Wang J, P Xu (2001) A new type of class I bacterial 5-enolpyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim Biophys Acta 1568:1–6

    PubMed  CAS  Google Scholar 

  • He M, Nie Y, Xu P (2003) A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate. Biosci Biotech Biochem 67:1405–1409

    Article  CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575

    Article  PubMed  CAS  Google Scholar 

  • Howe AR, Gasser CS, Brown SM, Padgette SR, Hart J, Parker GB, Fromm ME, Armstrong CL (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol Breeding 10:153–164

    Article  CAS  Google Scholar 

  • Hu SY (1993) Experimental methods in plant embryology (I) determination of pollen viability. Chin Bull Bot 10:60–62 (in Chinese)

    Google Scholar 

  • Khan MR., Rashid H, Ansar M, Chaudry Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus). Plant Cell Tissue Org 75:223–231

    Article  Google Scholar 

  • Kohnomurase J, Murase M, Ichikawa H, Imamura J (1995) Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theor Appl Genet 91:627–631

    CAS  Google Scholar 

  • Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of Southwestern Australian frgos. Arch Environ Con Tox 36:193–199

    Article  CAS  Google Scholar 

  • Muorten J, Janne B (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9:207–210

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohta Y (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 81:715–7190

    Article  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sanford JC, Skubik KA, Reisch BI (1985) Attempted pollen-mediated transformation employing genomic donor DNA. Theor Appl Genet 69:571–574

    Article  CAS  Google Scholar 

  • Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749

    Article  CAS  Google Scholar 

  • Senior IJ, Bavage AD (2003) Comparison of genetically modified and conventionally derived herbicide tolerance in oilseed rape: a case study. Euphytica 132:217–226

    Article  Google Scholar 

  • Smith EA, Oehme FW (1992) The biological activity of glyphosate to plants and animals: a literature review. Vet Hum Toxicol 34:531–543

    PubMed  CAS  Google Scholar 

  • Stöger E, Fink C, Pfosser M, Heberle-Bors E (1995) Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14:273–278

    Article  Google Scholar 

  • Tate TM, Spurlock JO, Christian FA (1997) Effect of glyphosate on the development of Pseudosuccinea columella snails. Arch Environ Contam Toxicol 33:286–289

    Article  CAS  Google Scholar 

  • Tjokrokusumo D, Heinrich T, Wylie S, Potter R, McComb J (2000) Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep 19:792–797

    Article  CAS  Google Scholar 

  • Touraev A, Stöger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–956

    Article  CAS  Google Scholar 

  • Trick HN, John JF (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • van der Leede-Plegt LM, van de Ven BCE, Schilder M, Franken J, van Tunen AJ (1995) Development of a pollen-mediated transformation method for Nicotiana glutinosa. Trangenic Res 4:77–86

    Article  Google Scholar 

  • Wang H, Li Y, Xie L, Xu P (2003) Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resitant tobacco plants. J Plant Res 116:455–460

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun Y, Cui G, Hu J (2001) Transgenic maize plants obtained by pollen-mediated transformation. Acta Botanic Sinica 43: 275–279

    CAS  Google Scholar 

  • Wang JX, Zhao FY, Xu P (2006) Use of aroA-M1 as a selectaboe marker for Brassica napus transformation. Crop Sci 46:706–711

    Article  CAS  Google Scholar 

  • Zhou H, Arrowsmith J, Fromm M, Hironaka C, Taylor M, Rodriguez D (1995) Glyphosate-tolerant CP4 and GOX gene as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163

    CAS  Google Scholar 

Download references

Acknowledgments

We deeply appreciate the provision of inbred oilseed lines and assistance with genetic transformation by Mr Genke Liu and Mr Xuejin Feng of the Cold Crops Institute at the Shanxi Academy of Agricultural Sciences, China. We also deeply appreciate the provision of the plasmid pGRA1300, and some help by Prof. Peilin Xu of Sun Yat-sen University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, Y. & Liang, C. Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea . Transgenic Res 17, 417–424 (2008). https://doi.org/10.1007/s11248-007-9115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9115-x

Keywords

Navigation