Skip to main content

Advertisement

Log in

Efficient quantitative morphological phenotyping of genetically altered organisms using stereology

  • Original paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Genetically modified organisms present the challenge of quantifying structures and functions in organs, tissues and cells. Morphological investigation is greatly facilitated by taking sections in MRI, CAT scanning, histological preparations or EM, and powerful unbiased quantitative tools called stereology can use these sections in a sampling based approach to measure volume, number surface and length. Stereological tools have become methods of choice in the fields of neurobiology, nephrology and cell biology and allow accurate unbiased description of intact organs, tissues, cells and organelles. Stereology has yet to be applied widely in the field of transgenics. Here I provide an overview of stereological methods and explain how they represent a powerful addition to the transgenic biologists armoury of techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Stereology can also be used to quantify the spatial distribution of biological quantities—using so called second-order stereology. This is outside the scope of this article but the reader is referred to sample papers that deal with this subject (Diggle 1983; Krasnoperov and Stoyan 2004; Mattfeldt 2005; Mattfeldt et al. 2006; Mayhew 1999; Nyengaard and Gundersen 2006; Prior et al. 2003; Reed and Howard 1999; Ripley 1981).

  2. It is important to note here that over the past 20 years there has been a move away from techniques that quantify on the basis of model assumptions about the size, shape or number of structures e.g. that a nucleus is spherical or a tubule is a cylinder. Modern stereology is designed a priori to remove restrictions of these assumptions and to provide unbiased estimates no matter what biological object is examined. These methods are therefore designated design-based estimators. They can be used to measure the aggregate volume, surface and length of a biological object of interest as well as the volume, surface, length and number of its individual components.

  3. In general SR sampling is more efficient on the inhomogeneous samples that abound in biology. However, when a periodic structure is in register with the array of the systematic sample then estimates can be more variable (less precise) than those obtained with random sampling. Simple random sampling is then the method of choice.

  4. With a growing number of experts in the field there are increasing opportunities to gain invaluable assistance in the initial phases of a project (see the International Society of Stereology website at http://www.stereologysociety.org/).

References

  • Andersen BB, Fabricius K, Gundersen HJ, Jelsing J, Stark AK (2004) No change in neuron numbers in the dentate nucleus of patients with schizophrenia estimated with a new stereological method—the smooth fractionator. J Anat 205:313–321

    Article  PubMed  CAS  Google Scholar 

  • Baddeley AJ, Gundersen HJ, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276

    PubMed  CAS  Google Scholar 

  • Bahmer FA, Hantirah S, Baum HP (1996) Rapid and unbiased estimation of the volume of cutaneous malignant melanoma using Cavalieri’s principle. Am J Dermatopathol 18:159–164

    Article  PubMed  CAS  Google Scholar 

  • Bock T, Pakkenberg B, Buschard K (2005) Genetic background determines the size and structure of the endocrine pancreas. Diabetes 54:133–137

    Article  PubMed  CAS  Google Scholar 

  • Braendgaard H, Evans SM, Howard CV, Gundersen HJ (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J Microsc 157:285–304

    PubMed  CAS  Google Scholar 

  • Brown D (2006) Imaging protein trafficking. Nephron Exp Nephrol 103:e55–e61

    Article  PubMed  Google Scholar 

  • Bundgaard MJ, Regeur L, Gundersen HJ, Pakkenberg B (2001) Size of neocortical neurons in control subjects and in Alzheimer’s disease. J Anat 198:481–489

    Article  PubMed  CAS  Google Scholar 

  • Buffon GL (1777) “Essay d’arithmétique morale”. Supplèment à l’Histoire Naturelle, vol 4, Paris

  • Cavalieri B (1635) Geometria Indivisibilibus Continuorum. Typis Clemetis Feronij Bononi. Reprinted 1966 as Geometria degli Indivisibili. Unione Tipografico-Editrice Torinese, Torino

  • Ciavarro GL, Calvaresi N, Botturi A, Bendotti C, Andreoni G, Pedotti A (2003) The densitometric physical fractionator for counting neuronal populations: application to a mouse model of familial amyotrophic lateral sclerosis. J Neurosci Meth 129:61–71

    Article  Google Scholar 

  • Colby LA, Morenko BJ (2004) Clinical considerations in rodent bioimaging. Comp Med 54:623–630

    PubMed  CAS  Google Scholar 

  • Cotter D, Miszkiel K, Al-Sarraj S, Wilkinson ID, Paley M, Harrison MJ, Hall-Craggs MA, Everall IP (1999) The assessment of postmortem brain volume; a comparison of stereological and planimetric methodologies. Neuroradiology 41:493–496

    Article  PubMed  CAS  Google Scholar 

  • Cranston A, Howard L, Howard CV (2004) Quantitative phenotyping as an efficient means to estimate C-cell number in a knock-in mouse model of MEN2B. Transgenic Res 13:339–348

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Orive LM (1987) Particle number can be estimated using a disector of unknown thickness: the selector. J Microsc 145:121–142

    PubMed  CAS  Google Scholar 

  • Cruz-Orive LM (1999) Precision of Cavalieri sections and slices with local errors. J Microsc 193:182–198

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Orive LM (2004) Precision of the fractionator from Cavalieri designs. J Microsc 213:205–211

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Orive LM (2006) A general variance predictor for Cavalieri slices. J Microsc 222:158–165

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Orive LM, Weibel ER (1990) Recent stereological methods for cell biology: a brief survey. Am J Physiol 258:L148–L156

    PubMed  CAS  Google Scholar 

  • Delesse MA (1847) Procédé mécanique pour déterminer la composition des roches. CR Acad Sci Paris 25:544–545

    Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, London

    Google Scholar 

  • Garcia-Finana M, Cruz-Orive LM (2000) New approximations for the variance in Cavalieri sampling. J Microsc 99:224–238

    Article  Google Scholar 

  • Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections. J Neurosci Meth 124:45–59

    Article  Google Scholar 

  • Gokhale AM, Evans RA, Mackes JL, Mouton PR (2004) Design-based estimation of surface area in thick tissue sections of arbitrary orientation using virtual cycloids. J Microsc 216:25–31

    Article  PubMed  CAS  Google Scholar 

  • Gong QY, Eldridge PR, Brodbelt AR, Garcia-Finana M, Zaman A, Jones B, Roberts N (2004) Quantification of tumour response to radiotherapy. Br J Radiol 77:405–413

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G. (1993) In Fine structure immunocytochemistry. G. Griffiths. Springer-Verlag, Berlin

  • Griffiths G, Lucocq JM, Mayhew TM (2001) Electron microscopy applications for quantitative cellular microbiology. Cell Microbiol 3:659–668

    Article  PubMed  CAS  Google Scholar 

  • Gual-Arnau X, Cruz Orive L (1998) Variance prediction under systematic sampling with geometric probes. Adv Appl Probability 30:1–15

    Article  Google Scholar 

  • Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    PubMed  CAS  Google Scholar 

  • Gundersen HJ (1992) Stereology: the fast lane between neuroanatomy and brain function—or still only a tightrope? Acta Neurol Scand Suppl 137:8–13

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJ (2002) The smooth fractionator. J Microsc 207:191–210

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJ, Jensen EB (1985) Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc 138(Pt 2):127–142

    PubMed  CAS  Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of stereological sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  CAS  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJ, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology-reconsidered. J Microsc 193:199–211

    Article  PubMed  CAS  Google Scholar 

  • Hedreen JC (1998) Lost caps in histological counting methods. Anat Rec 250:366–372

    Article  PubMed  CAS  Google Scholar 

  • Henery CC, Mayhew TM (1989) The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. J Anat 167:167–180

    PubMed  CAS  Google Scholar 

  • Howard CV, Reid S, Baddeley A, Boyde A (1985) Unbiased estimation of particle density in the tandem scanning reflected light microscope. J Microsc 138:203–212

    PubMed  CAS  Google Scholar 

  • Howard CV, Reed MG (1998) Unbiased stereology. Three dimensional measurement in microscopy. BIOS Oxford

  • Howard MA, Roberts N, Garcia-Finana M, Cowell PE (2003) Volume estimation of prefrontal cortical subfields using MRI and stereology. Brain Res Brain Res Protoc 10:125–138

    Article  PubMed  Google Scholar 

  • Insausti AM, Cruz-Orive LM, Jauregui I, Manrique M, Insausti R (1999) Stereological assessment of the glial reaction to chronic deafferentation of the cochlear nuclei in the macaque monkey (Macaca fascicularis). J Comp Neurol 414:485–494

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 97:12735–12740

    Article  PubMed  CAS  Google Scholar 

  • Jung A, Allen L, Nyengaard JR, Gundersen HJ, Richter J, Hawgood S, Ochs M (2005) Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice. Anat Rec A Discov Mol Cell Evol Biol 286:885–890

    PubMed  Google Scholar 

  • Kjellstrom C, Conradi N (1995) Synapse-to-neuron ratio in the lateral geniculate nucleus of rats exposed chronically to ethanol. Alcohol Clin Exp Res 19:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Korbo L, Amrein I, Lipp HP, Wolfer D, Regeur L, Oster S, Pakkenberg B (2004) No evidence for loss of hippocampal neurons in non-Alzheimer dementia patients. Acta Neurol Scand 109:132–139

    Article  PubMed  CAS  Google Scholar 

  • Krasnoperov RA, Stoyan D (2004) Second-order stereology of spatial fibre systems. J Microsc 216:156–164

    Article  PubMed  CAS  Google Scholar 

  • Kubinova L, Janacek J (1998) Estimating surface area by the isotropic fakir method from thick slices cut in an arbitrary direction. J Microsc 191:201–211

    Article  PubMed  CAS  Google Scholar 

  • Kubinova L, Janacek J (2001) Confocal microscopy and stereology: estimating volume, number, surface area and length by virtual test probes applied to three-dimensional images. Microsc Res Tech 53:425–435

    Article  PubMed  CAS  Google Scholar 

  • Kulandavelu S, Qu D, Sunn N, Mu J, Rennie MY, Whiteley KJ, Walls JR, Bock NA, Sun JC, Covelli A, Sled JG, Adamson SL (2006) Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J 47:103–117

    PubMed  CAS  Google Scholar 

  • Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, Prescott AR, Lucocq JM, Alessi DR (2002) Essential role of PDK1 in regulating cell size and development in mice. EMBO J 21:3728–3738

    Article  PubMed  CAS  Google Scholar 

  • Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, Cheema SS (2001) A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lucocq J (1992) Quantitation of gold labeling and estimation of labeling efficiency with a stereological counting method. J Histochem Cytochem 40:1929–1936

    PubMed  CAS  Google Scholar 

  • Lucocq J (1994) Quantitation of gold labelling and antigens in immunolabelled ultrathin sections. J Anat 184:1–13

    PubMed  CAS  Google Scholar 

  • Lucocq JM (2003) Electron microscopy in cell biology. In: Davey J, Michael Lord J (eds) Essential cell biology, vol 1 cell structure. Oxford University Press, New York, pp 53–112

  • Lucocq JM, Berger EG, Warren G (1989) Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J Cell Biol 109:463–474

    Article  PubMed  CAS  Google Scholar 

  • Lucocq JM, Habermann A, Watt S, Backer JM, Mayhew TM, Griffiths G(2004) A rapid method for assessing the distribution of gold labeling on thin sections. J Histochem Cytochem 52:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Mall G, Kayser K, Rossner JA (1977) The loss of membrane images from oblique sectioning of biological membranes and the availability of morphometric principles—demonstrated by the examination of heart muscle mitochondria. Mikroskopie 33:246–254

    PubMed  CAS  Google Scholar 

  • Maletti GM, Wulfsohn D (2006) Evaluation of variance models for fractionator sampling of trees. J Microsc 222:228–241

    Article  PubMed  CAS  Google Scholar 

  • Marcussen N (1992) The double disector: unbiased stereological estimation of the number of particles inside other particles. J Microsc 165:417–426

    PubMed  CAS  Google Scholar 

  • Mattfeldt T (2005) Explorative statistical analysis of planar point processes in microscopy. J Microsc 220:131–139

    Article  PubMed  CAS  Google Scholar 

  • Mattfeldt T (2006) Prediction of the variance of stereological volume estimates from systematic sections using computer-intensive methods. J Microsc 222:166–176

    Article  PubMed  Google Scholar 

  • Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientator. J Microsc 159:301–317

    PubMed  CAS  Google Scholar 

  • Mattfeldt T, Eckel S, Fleischer F, Schmidt V (2006) Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland. J Microsc 223:107–119

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM (1999) Second-order stereology and ultrastructural examination of the spatial arrangements of tissue compartments within glomeruli of normal and diabetic kidneys. J Microsc 195:87–95

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Gundersen HJ (1996) If you assume, you can make an ass out of u and me’: a decade of the disector for stereological counting of particles in 3D space. J Anat 188:1–15

    PubMed  Google Scholar 

  • Mayhew TM, Reith A (1988) Practical ways to correct cytomembrane surface densities for the loss of membrane images that results from oblique sectioning. In: Reith A, Mayhew TM (eds) Stereology and morphometry in electron microscopy. Problems and solutions. Hemisphere Publishing Company, NewYork/Washington/Philadelphia/London, pp 99–110

    Google Scholar 

  • Mayhew TM, Lucocq JM, Griffiths G (2002) Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J Microsc F205:153–164

    Article  Google Scholar 

  • Mayhew TM, Griffiths G, Lucocq JM (2004) Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem Cell Biol 122:171–177

    Article  PubMed  CAS  Google Scholar 

  • McCullough S, Lucocq J (2005) Endoplasmic reticulum positioning and partitioning in mitotic HeLa cells. J Anat 206:415–425

    Article  PubMed  Google Scholar 

  • McNulty V, Cruz-Orive LM, Roberts N, Holmes CJ, Gual-Arnau X (2000) Estimation of brain compartment volume from MR Cavalieri slices. J Comput Assist Tomogr 24:466–477

    Article  PubMed  CAS  Google Scholar 

  • Michel RP, Cruz-Orive LM (1988) Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J Microsc 150:117–136

    PubMed  CAS  Google Scholar 

  • Mironov AA Jr, Mironov AA (1998) Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of the vertical rotator. J Microsc 192:29–36

    Article  PubMed  Google Scholar 

  • Misso ML, Murata Y, Boon WC, Jones ME, Britt KL, Simpson ER (2003) Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 144:1474–1480

    Article  PubMed  CAS  Google Scholar 

  • Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956:30–35

    Article  PubMed  CAS  Google Scholar 

  • Nyengaard JR, Gundersen HJG (1992) The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc 165:427–431

    Google Scholar 

  • Nyengaard JR, Gundersen HJ (2006) Direct and efficient stereological estimation of total cell quantities using electron microscopy. J Microsc 222:182–187

    Article  PubMed  CAS  Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ (2004a) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  Google Scholar 

  • Ochs M, Knudsen L, Allen L, Stumbaugh A, Levitt S, Nyengaard JR, Hawgood S (2004b) GM-CSF mediates alveolar epithelial type II cell changes, but not emphysema-like pathology, in SP-D-deficient mice. Am J Physiol Lung Cell Mol Physiol 287:L1333–L1341

    Article  CAS  Google Scholar 

  • Pache JC, Roberts N, Vock P, Zimmermann A, Cruz-Orive LM (1993) Vertical LM sectioning and parallel CT scanning designs for stereology: application to human lung. J Microsc 170:9–24

    PubMed  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    Article  PubMed  Google Scholar 

  • Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  PubMed  CAS  Google Scholar 

  • Redwine JM, Kosofsky B, Jacobs RE, Games D, Reilly JF, Morrison JH, Young WG, Bloom FE (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100:1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Reed MG, Howard CV (1999) Stereological estimation of covariance using linear dipole probes. J Microsc 195:96–103

    Article  PubMed  CAS  Google Scholar 

  • Ripley BD (1981) Spatial statistic. Wiley, New York

    Book  Google Scholar 

  • Roberts N, Puddephat MJ, McNulty V (2000) The benefit of stereology for quantitative radiology. Br J Radiol 73:679–697

    PubMed  CAS  Google Scholar 

  • Roberts N, Cruz-Orive LM, Bourne M, Herfkens RJ, Karwoski RA, Whitehouse GH (1997) Analysis of cardiac function by MRI and stereology. J Microsc 187:31–42

    Article  PubMed  CAS  Google Scholar 

  • Rosen GD, Harry JD (1990) Brain volume estimation from serial section measurements: a comparison of methodologies. J Neurosci Meth 35:115–124

    Article  CAS  Google Scholar 

  • Royet JP (1991) Stereology: a method for analyzing images. Prog Neurobiol 37:433–474

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    Article  PubMed  CAS  Google Scholar 

  • Sahin B, Alper T, Kokcu A, Malatyalioglu E, Kosif R (2003) Estimation of the amniotic fluid volume using the Cavalieri method on ultrasound images. Int J Gynaecol Obstet 82:25–30

    Article  PubMed  CAS  Google Scholar 

  • Smythe E, Pypaert M, Lucocq J, Warren G (1989) Formation of coated vesicles from coated pits in broken A431 cells. J Cell Biol 108:843–853

    Article  PubMed  CAS  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  CAS  Google Scholar 

  • Swedlow JR (2003) Quantitative fluorescence microscopy and image deconvolution. Meth Cell Biol 72:349–367

    Article  Google Scholar 

  • Toft MH, Gredal O, Pakkenberg B (2005) The size distribution of neurons in the motor cortex in amyotrophic lateral sclerosis. J Anat 207:399–407

    Article  PubMed  Google Scholar 

  • van Kaick G, Delorme S (2005) Computed tomography in various fields outside medicine. Eur Radiol 4(Suppl 15):D74–D81

    Google Scholar 

  • Vedel Jensen EB, Gundersen HJG (1993) The rotator. J Microsc 170:35–44

    Google Scholar 

  • Walton JM, Roberts N, Whitehouse GH (1997) Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31:59–64

    Article  PubMed  CAS  Google Scholar 

  • Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J 363:657–666

    Article  PubMed  CAS  Google Scholar 

  • Watt SA, Kimber WA, Fleming IN, Leslie NR, Downes CP, Lucocq JM (2004) Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem J 377:653–663

    PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1. Practical methods for biological Morphometry. Academic Press, London

  • Weibel ER, Paumgartner D (1978) Integrated stereological and biochemical studies on hepatocytic membranes. II. Correction of section thickness effect on volume and surface density estimates. J Cell Biol 77:584–597

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Ostergaard K, Andreassen OA, Finsen B (1996) Estimation of the number of somatostatin neurons in the striatum: an in situ hybridization study using the optical fractionator method. J Comp Neurol 370:11–22

    Article  PubMed  CAS  Google Scholar 

  • Witgen BM, Grady MS, Nyengaard JR, Gundersen HJ (2006) A new fractionator principle with varying sampling fractions: exemplified by estimation of synapse number using electron microscopy. J Microsc 222:251–255

    Article  PubMed  CAS  Google Scholar 

  • Yoshiki A, Moriwaki K (2006) Mouse phenome research: implications of genetic background. ILAR J 47:94–102

    PubMed  CAS  Google Scholar 

  • Zang DW, Cheema SS (2002) Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 332:99–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the College of Life Sciences and the University of Dundee for continuing support of quantitative morphological approaches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Milton Lucocq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucocq, J.M. Efficient quantitative morphological phenotyping of genetically altered organisms using stereology. Transgenic Res 16, 133–145 (2007). https://doi.org/10.1007/s11248-006-9048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9048-9

Keywords

Navigation