Skip to main content
Log in

Biocatalytic Conversion of Lignocellulosic Water Hyacinth Biomass by Phanerochaete chrysosporium for Sustainable Ethanol Production

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Water hyacinth (Eichhornia crassipes) as a aquatic weed has become a source of concern for value addition. This study aimed to determine the feasibility of the weedy biomass in sustainable bioethanol production using Phanerochaete chrysosporium and Saccharomyces cerevisiae. The results indicated that P. chrysosporium significantly utilized 70.9% of cellulose and 70% of hemicellulose from raw lignocellulose of water hyacinth with significant microbial enzyme production of 1.26 IU/ml. Moreover, the microbial treatment resulted in a significant amount of soluble protein (194.30 mg/g) and reducing sugar (34.20 g/l). XRD, SEM and FTIR analyses revealed that the crystalinity of cellulose was increased with the microbial treatment and hence, the yield of sugar also. Under submerged fermentation, Saccharomyces cerevisiae produced a maximum of 20.17 g/l of ethanol. The promising results of the present study explored the microbial treatment with P. chrysosporium and fermentation with S. cerevisiae as a successful and sustainable method for ethanol production from lignocellulosic weedy biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not Applicable.

References

  1. Tasnim F, Iqbal SA, Chowdhury AR (2017) Biogas production from anaerobic co-digestion of cow manure with kitchen waste and water hyacinth. Renew Energy 109:434–439

    Article  CAS  Google Scholar 

  2. Ananthi V, Ramesh U, Balaji P, Kumar P, Govarthanan M, Arun A (2022) A review on the impact of various factors on biohydrogen production. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.046

    Article  Google Scholar 

  3. Merino-Pérez O, Martínez-Palou R, Labidi J, Luque R (2015) Microwave-assisted pretreatment of lignocellulosic biomass to produce biofuels and value-added products. In: Fang Z, Smith RL, Qi X (eds) Production of biofuels and chemicals with microwave. Springer, Netherlands, Dordrecht, pp 197–224

    Chapter  Google Scholar 

  4. Ganguly A, Das S, Bhattacharya A, Dey A, Chatterjee PK (2013) Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters. Indian J Exp Biol 51:556–66

    CAS  PubMed  Google Scholar 

  5. Bhuvanendran N, Ravichandran S, Narayanan M, Paulraj B, Kumarasamy S, Su H, Kandasamy S (2022) Emerging trends in biomass-derived carbon-supported metal nanostructures as efficient electrocatalysts for critical electrochemical reactions in low temperature fuel cell applications. In: Pathania D, Singh L (eds) Biorenewable nanocomposite materials, Vol 1: electrocatalysts and energy storage. American Chemical Society, Washington, pp 225–256

    Chapter  Google Scholar 

  6. Hou J, Ding C, Qiu Z, Zhang Q, Xiang W-N (2017) Inhibition efficiency evaluation of lignocellulose-derived compounds for bioethanol production. J Clean Prod 165:1107–1114

    Article  CAS  Google Scholar 

  7. Pothiraj C, Balaji P, Eyini M (2006) Enhanced production of cellulases by various fungal cultures in solid state fermentation of cassava waste. Afr J Biotechnol 5(20):1882–1885

    CAS  Google Scholar 

  8. Zhu J-Q, Li X, Qin L, Li W-C, Li H-Z, Li B-Z, Yuan Y-J (2016) In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Bioresour Technol 218:380–387

    Article  CAS  PubMed  Google Scholar 

  9. de Sousa GK, Maitan-Alfenas GP, de Andrade LG, Falkoski DL, Guimarães VM, Alfenas AC, de Rezende ST (2017) Purification and characterization of xylanases from the fungus Chrysoporthe cubensis for production of xylooligosaccharides and fermentable sugars. Appl Biochem Biotechnol 182:818–830

    Article  Google Scholar 

  10. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197

    Article  CAS  PubMed  Google Scholar 

  11. Pothiraj C, Balaji P, Eyini M (2006) Raw starch degrading amylase production by various fungal cultures grown on cassava waste. Mycobiology 34(3):128–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hazeena SH, Sindhu R, Pandey A, Binod P (2020) Lignocellulosic bio-refinery approach for microbial 2, 3-Butanediol production. Bioresour Technol 302:122873

    Article  CAS  PubMed  Google Scholar 

  13. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  14. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  CAS  PubMed  Google Scholar 

  15. Sambusiti C, Monlau F, Antoniou N, Zabaniotou A, Barakat A (2016) Simultaneous detoxification and bioethanol fermentation of furans-rich synthetic hydrolysate by digestate-based pyrochar. J Environ Manage 183:1026–1031

    Article  CAS  PubMed  Google Scholar 

  16. Singh R, Balagurumurthy B, Prakash A, Bhaskar T (2015) Catalytic hydrothermal liquefaction of water hyacinth. Bioresour Technol 178:157–165

    Article  CAS  PubMed  Google Scholar 

  17. Das SP, Gupta A, Das D, Goyal A (2016) Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design. Int Biodeterior Biodegrad 109:174–184

    Article  CAS  Google Scholar 

  18. Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Gnansounou E, Castro E, Faraco V (2017) Water hyacinth a potential source for value addition: an overview. Bioresour Technol 230:152–162

    Article  PubMed  Google Scholar 

  19. Biswas B, Singh R, Krishna BB, Kumar J, Bhaskar T (2017) Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour Technol 242:139–145

    Article  CAS  PubMed  Google Scholar 

  20. Volynets B, Ein-Mozaffari F, Dahman Y (2017) Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing. Green Process Synth 6(1):1–22

    Article  CAS  Google Scholar 

  21. Illuri R, Eyini M, Kumar M, Prema P, Nguyen V-H, Bukhari NA, Hatamleh AA, Balaji P (2022) Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards gram positive and gram negative microbial pathogens causing infectious disease. J Infect Public Health 15(2):297–306

    Article  PubMed  Google Scholar 

  22. Copa-Patiño JL, Kim YG, Broda P (1993) Production and initial characterisation of the xylan-degrading system of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 40:69–76

    Article  Google Scholar 

  23. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  24. Chesson A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Anim Feed Sci Technol 21(2–4):219–228

    Article  CAS  Google Scholar 

  25. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32(3):420–424

    Article  CAS  PubMed  Google Scholar 

  26. Deschatelets L, Yu EK (1986) A simple pentose assay for biomass conversion studies. Appl Microbiol Biotechnol 24:379–385

    Article  CAS  Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  28. Singhania RR, Sukumaran RK, Pillai A, Prema P, Szakacs G, Pandey A (2006) Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Indian J Biotechnol 5:332–336

    CAS  Google Scholar 

  29. Kim H, Yun S, Kweon U, Park S, Chung E, Kang W (1996) Seasonal difference in aerobic storage, ruminal degradation and chemical composition of wet brewers’ grain. RDA J Agric Sci 38:605–609

    Google Scholar 

  30. Li K, Xu F, Eriksson K-EL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65(6):2654–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:1–10

    Article  Google Scholar 

  32. Srinorakutara T, Subkaree Y, Boonvitthya N, Kunhanon T, Bamrungchue N (2015) Effect of commercial cellulase enzymes on ethanol production from pretreated rice straw at high solid loading. J Food Sci Eng. https://doi.org/10.17265/2159-5828/2015.02.003

    Article  Google Scholar 

  33. Cheng C, Zhang M, Xue C, Bai F, Zhao X (2017) Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: new aspects from cell flocculation and zinc supplementation. J Biosci Bioeng 123(2):141–146

    Article  CAS  PubMed  Google Scholar 

  34. Caputi A, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 19(3):160–165

    Article  CAS  Google Scholar 

  35. Ganguly A, Chatterjee P, Dey A (2012) Studies on ethanol production from water hyacinth—a review. Renew Sustain Energy Rev 16(1):966–972

    Article  CAS  Google Scholar 

  36. Yan J, Wei Z, Wang Q, He M, Li S, Irbis C (2015) Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol 193:103–109

    Article  CAS  PubMed  Google Scholar 

  37. Dagnino EP, Chamorro E, Romano SD, Felissia F, Area MC (2013) Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind Crops Prod 42:363–368

    Article  CAS  Google Scholar 

  38. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  39. Abdel-Fattah AF, Abdel-Naby MA (2012) Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydr Polym 87(3):2109–2113

    Article  CAS  Google Scholar 

  40. Narra M, Divecha J, Shah D, Balasubramanian V, Vyas B, Harijan M, Macwan K (2017) Cellulase production, simultaneous saccharification and fermentation in a single vessel: a new approach for production of bio-ethanol from mild alkali pre-treated water hyacinth. J Environ Chem Eng 5(3):2176–2181

    Article  CAS  Google Scholar 

  41. Gutierrez-Rojas I, Moreno-Sarmiento N, Montoya D (2014) Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models. Rev Iberoam Micol 32(1):1–12

    PubMed  Google Scholar 

  42. Gielkens MM, Dekkers E, Visser J, de Graaff LH (1999) Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 65(10):4340–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150(4):281–285

    Article  PubMed  Google Scholar 

  44. Ahmad Z, Butt MS, Anjum FM, Awan MS, Rathore HA, Nadeem MT, Ahmad A, Khaliq A (2012) Effect of corn cobs concentration on xylanase biosynthesis by Aspergillus niger. Afr J Biotech 11(7):1674–1682

    CAS  Google Scholar 

  45. Aydınoğlu T, Sargın S (2013) Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 36:215–222

    Article  PubMed  Google Scholar 

  46. Annuar MSM, Murthy SS, Sabanatham V (2010) Laccase production from oil palm industry solid waste: statistical optimization of selected process parameters. Eng Life Sci 10(1):40–48

    Article  CAS  Google Scholar 

  47. Das S, Bhattacharya A, Haldar S, Ganguly A, Gu S, Ting Y, Chatterjee P (2015) Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: comparison between artificial neural network and response surface methodology. Sustain Mater Technol 3:17–28

    Google Scholar 

  48. Das S, Gangly A, Dey A, Ting Y, Chatterjee P (2014) Characterization of water hyacinth biomass and microbial degradation of the biomass under solid state fermentation using a lignocellulolytic fungus (Alterneria spp. NITDS1). J Chem Biol Phys Sci 4:2279–2293

    CAS  Google Scholar 

  49. Wang Y, Hu L, Zhang G, Yan T, Yan L, Wei Q, Du B (2017) Removal of Pb (II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J Colloid Interface Sci 494:380–388

    Article  CAS  PubMed  Google Scholar 

  50. Asgher M, Sharif Y, Bhatti H (2010) Enhanced production of ligninolytic enzymes by Ganoderma lucidum IBL-06 using lignocellulosic agricultural wastes. Int J Chem Reactor Eng. https://doi.org/10.2202/1542-6580.2203

    Article  Google Scholar 

  51. Childs BC, Bohlscheid JC, Edwards CG (2015) Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis. Food Microbiol 46:604–609

    Article  CAS  PubMed  Google Scholar 

  52. Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Wei Y, Han H, Weng C (2018) Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour Technol 251:358–363

    Article  CAS  PubMed  Google Scholar 

  54. Mojović L, Nikolić S, Rakin M, Vukasinović M (2006) Production of bioethanol from corn meal hydrolyzates. Fuel 85(12–13):1750–1755

    Article  Google Scholar 

  55. Aswathy U, Sukumaran RK, Devi GL, Rajasree K, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101(3):925–930

    Article  CAS  PubMed  Google Scholar 

  56. Lee S-H, Teramoto Y, Endo T (2009) Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I-Effect of additives with cellulose affinity. Bioresour Technol 100(1):275–279

    Article  CAS  PubMed  Google Scholar 

  57. Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501

    Article  CAS  Google Scholar 

  58. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  59. Pothiraj C, Kanmani P, Balaji P (2006) Bioconversion of lignocellulose materials. Mycobiology 34(4):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saratale GD, Oh M-K (2015) Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5(118):97171–97179

    Article  CAS  Google Scholar 

  61. Zhang Q, Huang H, Han H, Qiu Z, Achal V (2017) Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy 135:32–39

    Article  CAS  Google Scholar 

  62. Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100(19):4374–4380

    Article  CAS  PubMed  Google Scholar 

  63. Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82(7):685–696

    Article  CAS  Google Scholar 

  64. Bronzato G, Ziegler S, Silva R, Cesarino I, Leão A (2017) Characterization of the pre-treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production. Mol Cryst Liq Cryst 655(1):224–235

    Article  CAS  Google Scholar 

  65. Singh JK, Chaurasia B, Dubey A, Faneite Noguera AM, Gupta A, Kothari R, Upadhyaya CP, Kumar A, Hashem A, Alqarawi AA (2020) Biological characterization and instrumental analytical comparison of two biorefining pretreatments for water hyacinth (Eichhornia crassipes) biomass hydrolysis. Sustainability 13(1):245

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Researchers Supporting Project Number (RSP2024R165), Kind Saud University, Riyadh, Saudi Arabia. The authors thankfully recognize the Department of Botany, Government Arts and Science College, Melur and the support of the management of MGR College in Hosur, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RMG, CP and PB; methodology, RMG, RA; validation, PP, DA and SA; formal analysis, PP, DA, SA and PB; investigation, RMG, RA; data curation, VV, BVP and PB; Software: PP; writing—original draft preparation, RMG, RA and VHN; writing—review and editing, VV, VHN and PB; supervision, CP and PB.

Corresponding authors

Correspondence to Chinnathambi Pothiraj, Van-Huy Nguyen or Paulraj Balaji.

Ethics declarations

Competing Interests

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobinath, R.M., Pothiraj, C., Arumugam, R. et al. Biocatalytic Conversion of Lignocellulosic Water Hyacinth Biomass by Phanerochaete chrysosporium for Sustainable Ethanol Production. Top Catal (2024). https://doi.org/10.1007/s11244-024-01952-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01952-6

Keywords

Navigation