Skip to main content
Log in

Sonophotocatalytic Degradation of Reactive Black 5 in Simulated Dye Wastewater Using ZnO and Activated Red Mud Sonophotocatalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, an anionic dye, Reactive Black 5 (RB5), was subjected to sonophotocatalytic treatment process with the aim of establishing the effectiveness of the prepared ZnO incorporated activated red mud (ZnO/ARM) as a viable sonophotocatalyst. ZnO/ARM was prepared by impregnation method at different weight ratios (0.25:1, 0.5:1, 0.75:1 and 1:1) with the ZnO/ARM at weight ratio of 0.75:1 proving to be the best sonophotocatalyst. The prepared sonophotocatalysts were characterized by X-ray diffractometer for crystal phase studies, Brunauer–Emmett–Teller for surface area studies, Fourier transform infrared for surface functional groups studies, SEM–EDX for surface morphological and elemental studies, diffuse reflectance spectroscopy and photoluminescence for sonophotocatalyst band-gap studies while parametric and kinetic studies of the removal of RB5 from the simulated wastewater were conducted to confirm its effectiveness under simultaneous application of a transducer bath-type sonicator (35 kHz) and a UV-C (254 nm) lamp. The influence of the solution pH, concentration and catalyst dosage were manipulated throughout this study to investigate the sonophotodegradation kinetics and synergistic effects on the RB5 degradation. Experimental results confirmed that the sonophotocatalytic degradation rate of 20 ppm RB5 was most effective under acidic medium (66.7%) as compared to alkaline medium (46.1%) due to an excess of positive charge in the ZnO/ARM surface which favours a strong electrostatic interaction with SO3 groups of the dye resulting in a higher degradation rate (0.0156 min−1). Under alkaline conditions, the catalytic activity of ZnO/ARM was attenuated by the higher negative charge which promoted the repulsion of the dye from ZnO/ARM surfaces leading to a lower degradation rate of 0.01 min−1. The accelerated photo induced electron–hole transfer and separation, decreased recombination rate and band energy matching, enhancing the photocatalytic performance of ZnO/ARM composite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

[71]

Fig. 13

Similar content being viewed by others

References

  1. Babu SG, Ashokkumar M, Neppolian B (2016) The role of ultrasound on advanced oxidation processes. Top Curr Chem 374:75. https://doi.org/10.1007/s41061-016-0072-9

    Article  CAS  Google Scholar 

  2. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic retreatment of sludge: a review. Ultrason Sonochem 18:1–18. https://doi.org/10.1016/j.ultsonch.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  3. Monteagudo JM, Durán A, San Martín I (2014) Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe (II) and ultrasonic irradiation. J Environ Manag 141:61–69. https://doi.org/10.1016/j.jenvman.2014.03.020

    Article  CAS  Google Scholar 

  4. Bahena CL, Martínez SS, Guzmán DM, Hernández MDRT (2008) Sonophotocatalytic degradation of alazine and gesaprim commercial herbicides in TiO2 slurry. Chemosphere 71:982–989. https://doi.org/10.1016/j.chemosphere.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  5. Joseph CG, Li G, Bono A, Taufiq-Yap YH, Krishnaiah D (2015) Sonolysis, photolysis, and sequential sonophotolysis for the degradation of 2, 4, 6-trichlorophenol: the effect of solution concentration. Chem Eng Commun 202:1061–1068

    Article  CAS  Google Scholar 

  6. Xu LJ, Chu W, Graham N (2013) Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modelling. Water Res 47:1996–2004. https://doi.org/10.1016/j.watres.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  7. Durán A, Monteagudo JM, Sanmartín I, García-Díaz A (2013) Sonophotocatalytic mineralization of antipyrine in aqueous solution. Appl Catal B Environ 138:318–325. https://doi.org/10.1016/j.apcatb.2013.03.013

    Article  CAS  Google Scholar 

  8. Amaniampong PN, Jerome F (2020) Catalysis under ultrasonic irradiation: a sound synergy. Curr Opin Green Sustain Chem 22:7–12. https://doi.org/10.1016/j.cogsc.2019.11.002

    Article  Google Scholar 

  9. Liu IT, Hon MH, Teoh LG (2014) The preparation, characterization and photocatalytic activity of radical-shaped. Ceram Int 40:4019–4024

    Article  CAS  Google Scholar 

  10. Samadi M, Pourjavadi A, Moshfegh AZ (2014) Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light. Appl Surf Sci 298:147–154. https://doi.org/10.1016/j.apsusc.2014.01.146

    Article  CAS  Google Scholar 

  11. Liu ZL, Deng JC, Deng JJ, Li FF (2008) Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method. Mater Sci Eng B 150:99–104. https://doi.org/10.1016/j.mseb.2008.04.002

    Article  CAS  Google Scholar 

  12. Xu C, Cao L, Su G, Liu W, Liu H, Yu Y, Qu X (2010) Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J Hazard Mater 176:807–813. https://doi.org/10.1016/j.jhazmat.2009.11.106

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Li W, Guan X (2015) An active dealkalization of red mud with roasting and water leaching. J Hazard Mater. https://doi.org/10.1016/j.ultsonch.2014.07.002

    Article  PubMed  Google Scholar 

  14. Alaton IA, Insel G, Eremektar G, Babuna FG, Orhon D (2006) Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge. Chemosphere 62:1549–1557. https://doi.org/10.1016/j.chemosphere.2005.06.010

    Article  CAS  Google Scholar 

  15. Joseph CG, Taufiq-Yap YH, Vigneswar K, Li Puma G (2020) Application of modified red mud in environmentally-benign applications: a review paper. Environ Eng Res 25:795–806. https://doi.org/10.4491/eer.2019.374

    Article  Google Scholar 

  16. Sahu RC, Patel RK, Ray BC (2010) Neutralization of red mud using CO2 sequestration cycle. J Hazard Mater 179:28–34. https://doi.org/10.1016/j.jhazmat.2010.02.052

    Article  CAS  PubMed  Google Scholar 

  17. Fu X, Zhang B, Liu H, Zong B, Huang L, Bala H, Zhang Z (2017) Synthesis and improved gas sensing properties of ZnO/α-Fe2O3 microflowers assembled with nanosheets. Mater Lett 196:149–152. https://doi.org/10.1016/j.matlet.2017.03.036

    Article  CAS  Google Scholar 

  18. Li X, Zhou M, Pan Y, Xu L, Tang Z (2017) Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment. Sep Purif Tech 178:49–55. https://doi.org/10.1016/j.seppur.2016.12.050

    Article  CAS  Google Scholar 

  19. Castaldi P, Silvetti M, Garau G, Deiana S (2010) Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste). J Hazard Mater 182:266–272. https://doi.org/10.1016/j.jhazmat.2010.06.025

    Article  CAS  PubMed  Google Scholar 

  20. Sultan S, Kareem K, He L (2016) Synthesis, characterization, and resistant performance of α-Fe2O3@ SiO2 composite as pigment protective coatings. Surf Coat Technol 300:42–49. https://doi.org/10.1016/j.surfcoat.2016.05.010

    Article  CAS  Google Scholar 

  21. Chakma S, Das L, Moholkar VS (2015) Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems: a mechanistic investigation. Sep Purif Technol 156:596–607. https://doi.org/10.1016/j.seppur.2015.10.055

    Article  CAS  Google Scholar 

  22. Hong R, Pan T, Qian J, Li H (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119:71–81. https://doi.org/10.1016/j.cej.2006.03.003

    Article  CAS  Google Scholar 

  23. Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) Infrared absorption spectra and structure of TiO2-SiO2 composites. J Appl Spec 75:730–734. https://doi.org/10.1007/s10812-008-9097-3

    Article  CAS  Google Scholar 

  24. Li YC, Min XB, Ke Y, Chai LY, Shi MQ, Tang CJ, Liu DG (2018) Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J Hazard Mater 344:343–349. https://doi.org/10.1016/j.jhazmat.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  25. Adak D, Show B, Mondal A, Mukherjee N (2017) ZnO/γ-Fe2O3 charge transfer interface in zinc-iron oxide hollow cages towards efficient photodegradation of industrial dyes and methanol electrooxidation. J Catal 355:63–72. https://doi.org/10.1016/j.jcat.2017.09.003

    Article  CAS  Google Scholar 

  26. Bousslama W, Elhouichet H, Férid M (2017) Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik Int J Light Electron Optics 134:88–98. https://doi.org/10.1016/j.ijleo.2017.01.025

    Article  CAS  Google Scholar 

  27. Raja K, Ramesh PS, Geetha D (2014) Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim Acta A 131:183–188. https://doi.org/10.1016/j.saa.2014.03.047

    Article  CAS  Google Scholar 

  28. Lavand AB, Malghe YS (2015) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. J Saudi Chem Soc 19:471–478. https://doi.org/10.1016/j.jscs.2015.07.001

    Article  Google Scholar 

  29. Karunakaran C, Magesan P, Gomathisankar P, Vinayagamoorthy P (2015) Absorption, emission, charge transfer resistance and photocatalytic activity of Al2O3/TiO2 core/shell nanoparticles. Superlattices Microstruct 83:659–667. https://doi.org/10.1016/j.spmi.2015.04.014

    Article  CAS  Google Scholar 

  30. Sarma B, Deb SK, Sarma BK (2016) Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure. J Phys Conf Ser 765:012023. https://doi.org/10.1088/1742-6596/765/1/012023

    Article  CAS  Google Scholar 

  31. Ojha DP, Joshi MK, Kim HJ (2017) Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceram Int 43:1290–1297. https://doi.org/10.1016/j.ceramint.2016.10.079

    Article  CAS  Google Scholar 

  32. Demirci S, Yurddaskal M, Dikici T, Sarıoğlu C (2018) Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances. J Hazard Mater 345:27–37. https://doi.org/10.1016/j.jhazmat.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  33. Joseph CG, Li Puma G, Bono A, Taufiq YH, Krishnaiah D (2015) Sonolysis photolysis, and sequential sonophotolysis for the degradation of 2, 4, 6-trichlorophenol: the effect of solution concentration. Chem Eng Commun 202:1061–1068. https://doi.org/10.1080/00986445.2014.901221

    Article  CAS  Google Scholar 

  34. Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299. https://doi.org/10.1016/j.ultsonch.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  35. Soltani RDC, Jorfi S, Safari M, Rajaei MS (2016) Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach. J Environ Manag 179:47–57. https://doi.org/10.1016/j.jenvman.2016.05.001

    Article  CAS  Google Scholar 

  36. Soltani RDC, Jorfi S, Ramezani H, Purfadakari S (2016) Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem 28:69–78. https://doi.org/10.1016/j.ultsonch.2015.07.002

    Article  CAS  Google Scholar 

  37. Lucas MS, Tavares PB, Peres JA, Faria JL, Rocha M, Pereira C, Freire C (2013) Photocatalytic degradation of Reactive Black 5 with TiO2- coated magnetic nanoparticles. Catal Today 209:116–121. https://doi.org/10.1016/j.cattod.2012.10.024

    Article  CAS  Google Scholar 

  38. Barik AJ, Kulkarni SV, Gogate PR (2016) Degradation of 4-chloro 2-aminophenol using combined approaches based on microwave and photocatalysis. Sep Purif Technol 168:152–160. https://doi.org/10.1016/j.seppur.2016.05.050

    Article  CAS  Google Scholar 

  39. Khataee A, Gholami P, Kalderis D, Pachatouridou E, Konsolakis M (2018) Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrason Sonochem 41:503–513. https://doi.org/10.1016/j.ultsonch.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  40. Saharan P, Chaudhary GR, Lata S, Mehta SK, Mor S (2015) Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason Sonochem 22:317–325. https://doi.org/10.1016/j.ultsonch.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  41. Khataee A, Sheydaei M, Hassani A, Taseidifar M, Karaca S (2015) Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrason Sonochem 22:404–411. https://doi.org/10.1016/j.ultsonch.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  42. Soltani RDC, Safari M, Mashayekhi M (2016) Sonocatalyzed decolorization of synthetic textile wastewater using sonochemically synthesized MgO nanostructures. Ultrason Sonochem 30:123–131. https://doi.org/10.1016/j.ultsonch.2015.11.018

    Article  CAS  Google Scholar 

  43. Reza KM, Kurny ASW, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578. https://doi.org/10.1007/s13201-015-0367-y

    Article  CAS  Google Scholar 

  44. Mahmoodi NM (2014) Binary catalyst system dye degradation using photocatalysis. Fibers Polym 15:273–280. https://doi.org/10.1007/s12221-014-0273-1

    Article  CAS  Google Scholar 

  45. Wang CC, Lee CK, Lyu MD, Juang LC (2008) Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigm 76:817–824. https://doi.org/10.1016/j.dyepig.2007.02.004

    Article  CAS  Google Scholar 

  46. Alahiane S, Sennaoui A, Sakr F, Qourzal S, Dinne M, Assabbane A (2017) A study of the photocatalytic degradation of the textile dye Reactive Yellow 17 in aqueous solution by TiO2-coated non-woven fibres in a batch photoreactor. J Mater Environ Sci 8:3556–3563

    CAS  Google Scholar 

  47. Talebian N, Nilforoushan MR, Mogaddas FJ (2013) Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceram Int 39:4913–4921. https://doi.org/10.1016/j.ceramint.2012.11.085

    Article  CAS  Google Scholar 

  48. Kavitha SK, Palanisamy PN (2011) Photocatalytic and sonophotocatalytic degradation of reactive red 120 using dye sensitized TiO2 under visible light. Int J Civil Environ Eng 3:1–6

    Google Scholar 

  49. Khan MAN, Siddique M, Wahid F, Khan R (2015) Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason Sonochem 26:370–377. https://doi.org/10.1016/j.ultsonch.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  50. Bansal P, Chaudhary GR, Mehta SK (2015) Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chem Eng J 280:475–485. https://doi.org/10.1016/j.cej.2015.06.039

    Article  CAS  Google Scholar 

  51. Shibin OM, Yesodharan S, Yesodharan EP (2015) Sunlight induced photocatalytic degradation of herbicide diquat in water in presence of ZnO. J Environ Chem Eng 3:1107–1116. https://doi.org/10.1016/j.jece.2015.04.026

    Article  CAS  Google Scholar 

  52. Kanagaraj T, Thiripuranthagan S (2017) Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl Catal B 207:218–232

    Article  CAS  Google Scholar 

  53. Fida H, Zhang G, Guo S, Naeem A (2017) Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. J Colloid Interface Sci 490:859–868. https://doi.org/10.1016/j.jcis.2016.11.085

    Article  CAS  PubMed  Google Scholar 

  54. Thejaswini TVL, Prabhakaran D, Maheswari MA (2017) Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J Photochem Photobiol A 344:212–222. https://doi.org/10.1016/j.jphotochem.2017.05.015

    Article  CAS  Google Scholar 

  55. Torres RA, Nieto JI, Combet E, Pétrier C, Pulgarin C (2008) Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Appl Catal B 80:168–175. https://doi.org/10.1016/j.apcatb.2007.11.013

    Article  CAS  Google Scholar 

  56. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of Reactive Black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246. https://doi.org/10.1016/j.watres.2007.01.048

    Article  CAS  PubMed  Google Scholar 

  57. Sahel K, Perol N, Dappozze F, Bouhent M, Derriche Z, Guillard C (2010) Photocatalytic degradation of a mixture of two anionic dyes: Procion Red MX-5B and Remazol Black 5 (RB5). J Photochem Photobiol A 212:107–112. https://doi.org/10.1016/j.jphotochem.2010.03.019

    Article  CAS  Google Scholar 

  58. Gentili PL, Penconi M, Ortica F, Cotana F, Rossi F, Elisei F (2009) Synergistic effects in hydrogen production through water sonophotolysis catalyzed by new La2xGa2yIn2 (1–x−y) O3 solid solutions. Int J Hydrogen Ener 34:9042–9049. https://doi.org/10.1016/j.ijhydene.2009.09.027

    Article  CAS  Google Scholar 

  59. Joseph CGJA, Liew SYL, Krishnaiah D, Bono A (2012) Application of a semiconductor oxide-based catalyst in heterogeneous wastewater treatment: a green technology approach. J Appl Sci 12:1966–1971. https://doi.org/10.1016/j.arabjc.2016.10.004

    Article  CAS  Google Scholar 

  60. Xu LJ, Chu W, Lee PH, Wang J (2016) The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis. J Hazard Mater 308:386–393. https://doi.org/10.1016/j.jhazmat.2016.01.075

    Article  CAS  PubMed  Google Scholar 

  61. Xie J, Zhou Z, Lian Y, Hao Y, Li P, Wei Y (2015) Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram Int 41:2622–2625. https://doi.org/10.1016/j.ceramint.2020.06.087

    Article  CAS  Google Scholar 

  62. Xie J, Zhang L, Li M, Hao Y, Lian Y, Li Z, Wei Y (2015) α-Fe2O3 modified ZnO flower-like microstructures with enhanced photocatalytic performance for pentachlorophenol degradation. Ceram Int 41:9420–9425. https://doi.org/10.1016/j.ceramint.2020.06.087

    Article  CAS  Google Scholar 

  63. Zhao J, Wang X, Xu Z, Loo JS (2014) Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. J Mater Chem A 2:15228–15233. https://doi.org/10.1039/C4TA02250E

    Article  CAS  Google Scholar 

  64. Wang S, Yun JH, Luo B, Butburee T, Peerakiatkhajohn P, Thaweesak S, Wang L (2017) Recent progress on visible light responsive heterojunctions for photocatalytic applications. J Mater Sci Technol 33:1–22. https://doi.org/10.1016/j.jmst.2016.11.017

    Article  CAS  Google Scholar 

  65. Lucas MS, Peres JA (2006) Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm 71:236–244. https://doi.org/10.1016/j.dyepig.2005.07.007

    Article  CAS  Google Scholar 

  66. Joseph CG, Taufiq-Yap YH, Puma G, Sanmugam K, Quek KS (2016) Photocatalytic degradation of cationic dye simulated wastewater using four radiation sources. Desal Water Treat 57:7976–7987. https://doi.org/10.1080/19443994.2015.1063463

    Article  CAS  Google Scholar 

  67. Song S, Xu L, He Z, Chen J, Xiao X, Yan B (2007) Mechanism of the photocatalytic degradation of CI Reactive Black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst. Environ Sci Technol 41:5846–5853. https://doi.org/10.1021/es070224i

    Article  CAS  PubMed  Google Scholar 

  68. Damodar RA, You SJ (2010) Performance of an integrated membrane photocatalytic reactor for the removal of Reactive Black 5. Sep Purif Technol 71:44–49. https://doi.org/10.1016/j.seppur.2009.10.025

    Article  CAS  Google Scholar 

  69. Nasuha N, Ismail S, Hameed BH (2016) Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. J Taiwan Inst Chem Eng 67:235–243. https://doi.org/10.1016/j.jtice.2016.07.023

    Article  CAS  Google Scholar 

  70. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, Oon YL (2017) Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5. Sep Purif Technol 177:135–141. https://doi.org/10.1016/j.seppur.2016.12.030

    Article  CAS  Google Scholar 

  71. Chatterjee D, Patnam VR, Sikdar A, Joshi P, Misra R, Rao NN (2008) Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst. J Hazard Mater 156:435–441. https://doi.org/10.1016/j.jhazmat.2007.12.038

    Article  CAS  PubMed  Google Scholar 

  72. Behnajady MA, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J Hazad Mater 133:226–232. https://doi.org/10.1016/j.jhazmat.2005.10.022

    Article  CAS  Google Scholar 

  73. Modirshahla N, Hassani A, Behnajady MA, Rahbarfam R (2011) Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination 271:187–192. https://doi.org/10.1016/j.desal.2010.12.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Management Centre of Universiti Putra Malaysia in collaboration with the Research Management Centre of Universiti Malaysia Sabah (Grant No. RACE0008-ST-2013) and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin G. Joseph.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 562 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Joseph, C.G., Taufiq-Yap, Y.H. et al. Sonophotocatalytic Degradation of Reactive Black 5 in Simulated Dye Wastewater Using ZnO and Activated Red Mud Sonophotocatalyst. Top Catal (2024). https://doi.org/10.1007/s11244-024-01945-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01945-5

Keywords

Navigation