Skip to main content
Log in

Tuning the Interaction Between Ru Nanoparticles and Nd2O3 to Enhance Hydrogen Formation from Ammonia Decomposition

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Development of highly active and stable catalysts for production of COx-free hydrogen from ammonia is crucial for the use of ammonia as hydrogen carrier. Herein, Ru nanoparticles (NPs) on Nd2O3 (Ru/Nd2O3) was prepared by different methods and investigated for NH3 decomposition reaction. The dependence of the catalytic activity of Ru NPs on the Nd2O3 on the interaction between Ru NPs and Nd2O3 support was investigated in detail. The Ru/Nd2O3 obtained from precipitation method exhibits a high hydrogen formation rate of 1548 mmol gcat−1 h−1 at 450 °C, which is high than that of the Ru/Nd2O3 analogue from milling method and comparable with many efficient oxides supported Ru catalysts reported previously. As revealed by various characterization techniques, the high activity of Ru/Nd2O3 obtained from precipitation method can be attributed to the enhanced interaction between Ru NPs and Nd2O3. The Ru NPs in Ru/Nd2O3 analogue with enhanced the metal-support interaction can modulate electronic structure and facilitate the activation and decomposition of NH3. Therefore, Ru/Nd2O3 obtained from precipitation method exhibited significantly improved activity and intrinsic activity for NH3 decomposition. This study provides promise for the design of efficient Ru/Nd2O3 catalyst for NH3 decomposition reaction by tuning the metal–support interaction of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data used during the study are available in a repository or online in accordance with funder data retention policies.

References

  1. He T, Pachfule P, Wu H, Xu Q, Chen P (2016) Hydrogen carriers. Nat Rev Mater 1(12):17. https://doi.org/10.1038/natrevmats.2016.59

    Article  CAS  Google Scholar 

  2. Klerke A, Christensen CH, Norskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18(20):2304–2310. https://doi.org/10.1039/b720020j

    Article  CAS  Google Scholar 

  3. Lan R, Irvine JTS, Tao SW (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy 37(2):1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004

    Article  CAS  Google Scholar 

  4. Metkemeijer R, Achard P (1994) Comparison of ammonia and methanol applied indirectly in a hydrogen fuel-cell. Int J Hydrogen Energy 19(6):535–542. https://doi.org/10.1016/0360-3199(94)90009-4

    Article  CAS  Google Scholar 

  5. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18(20):2304. https://doi.org/10.1039/b720020j

    Article  CAS  Google Scholar 

  6. Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal Lett 72(3–4):197–201. https://doi.org/10.1023/A:1009023825549

    Article  CAS  Google Scholar 

  7. Yin SF, Xu BQ, Ng CF, Au CT (2004) Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition. Appl Catal B 48(4):237–241. https://doi.org/10.1016/j.apcatb.2003.10.013

    Article  CAS  Google Scholar 

  8. Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2004) Magnesia-carbon nanotubes (MgO-CNTs) nanocomposite: novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia. Catal Lett 96(3–4):113–116. https://doi.org/10.1023/B:Catl.0000030107.64702.74

    Article  CAS  Google Scholar 

  9. Ganley JC, Thomas FS, Seebauer EG, Masel RI (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96(3–4):117–122. https://doi.org/10.1023/B:Catl.0000030108.50691.D4

    Article  CAS  Google Scholar 

  10. Hill AK, Torrente-Murciano L (2015) Low temperature H-2 production from ammonia using ruthenium-based catalysts: synergetic effect of promoter and support. Appl Catal B 172:129–135. https://doi.org/10.1016/j.apcatb.2015.02.011

    Article  CAS  Google Scholar 

  11. Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT (2004) Investigation on the catalysis of COx-free hydrogen generation from ammonia. J Catal 224(2):384–396. https://doi.org/10.1016/j.jcat.2004.03.008

    Article  CAS  Google Scholar 

  12. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G (2018) Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl Catal B 226:162–181. https://doi.org/10.1016/j.apcatb.2017.12.039

    Article  CAS  Google Scholar 

  13. Li YX, Yao LH, Song YY, Liu SQ, Zhao J, Ji WJ, Au CT (2010) Core-shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition. Chem Commun 46(29):5298–5300. https://doi.org/10.1039/c0cc00430h

    Article  CAS  Google Scholar 

  14. Li XK, Ji WJ, Zhao J, Wang SJ, Au CT (2005) Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J Catal 236(2):181–189. https://doi.org/10.1016/j.jcat.2005.09.030

    Article  CAS  Google Scholar 

  15. Li G, Kanezashi M, Tsuru T (2011) Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production. Catal Commun 15(1):60–63. https://doi.org/10.1016/j.catcom.2011.08.011

    Article  CAS  Google Scholar 

  16. Okal J, Zawadzki M, Kepinski L, Krajczyk L, Tylus W (2007) The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/gamma-alumina catalysts. Appl Catal A 319:202–209. https://doi.org/10.1016/j.apcata.2006.12.005

    Article  CAS  Google Scholar 

  17. Larichev YV (2011) Effect of Cs+ promoter in Ru/MgO catalysts. J Phys Chem C 115(3):631–635. https://doi.org/10.1021/jp109737p

    Article  CAS  Google Scholar 

  18. Zhang J, Xu HY, Ge QJ, Li WZ (2006) Highly efficient Ru/MgO catalysts for NH3 decomposition: synthesis, characterization and promoter effect. Catal Commun 7(3):148–152. https://doi.org/10.1016/j.catcom.2005.10.002

    Article  CAS  Google Scholar 

  19. Ju XH, Liu L, Yu P, Guo JP, Zhang XL, He T, Wu GT, Chen P (2017) Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COX-free hydrogen from ammonia decomposition. Appl Catal B 211:167–175. https://doi.org/10.1016/j.apcatb.2017.04.043

    Article  CAS  Google Scholar 

  20. Wang ZQ, Qu YM, Shen XL, Cai ZF (2019) Ruthenium catalyst supported on Ba modified ZrO2 for ammonia decomposition to COx-free hydrogen. Int J Hydrogen Energy 44(14):7300–7307. https://doi.org/10.1016/j.ijhydene.2019.01.235

    Article  CAS  Google Scholar 

  21. Yin SF, Xu BQ, Wang SJ, Au CT (2006) Nanosized Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition. Appl Catal A 301(2):202–210. https://doi.org/10.1016/j.apcata.2005.12.005

    Article  CAS  Google Scholar 

  22. Zhang T, Ju XH, Liu LY, Liu L, He T, Xu YH, Wang HY, Chen P (2023) Steering ammonia decomposition over Ru nanoparticles on ZrO2 by enhancing metal-support interaction. Catal Sci Technol. https://doi.org/10.1039/d3cy00691c

    Article  Google Scholar 

  23. Huang CQ, Yu YZ, Yang JM, Yan Y, Wang DS, Hu FY, Wang XW, Zhang RB, Feng G (2019) Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Appl Surf Sci 476:928–936. https://doi.org/10.1016/j.apsusc.2019.01.112

    Article  CAS  Google Scholar 

  24. Wang ZQ, Cai ZF, Wei Z (2019) Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. Acs Sustain Chem Eng 7(9):8226–8235. https://doi.org/10.1021/acssuschemeng.8b06308

    Article  CAS  Google Scholar 

  25. Feng J, Liu L, Ju XH, Wang JM, Zhang XL, He T, Chen P (2021) Highly dispersed ruthenium nanoparticles on Y2O3 as superior catalyst for ammonia decomposition. ChemCatChem 13(6):1552–1558. https://doi.org/10.1002/cctc.202001930

    Article  CAS  Google Scholar 

  26. Zhang XL, Liu L, Feng J, Ju XH, Wang JM, He T, Chen P (2022) Ru nanoparticles on Pr2O3 as an efficient catalyst for hydrogen production from ammonia decomposition. Catal Lett 152(4):1170–1181. https://doi.org/10.1007/s10562-021-03709-2

    Article  CAS  Google Scholar 

  27. Zhang XL, Liu L, Feng J, Ju XH, Wang JM, He T, Chen P (2021) Metal-support interaction-modulated catalytic activity of Ru nanoparticles on Sm2O3 for efficient ammonia decomposition. Catal Sci Technol 11(8):2915–2923. https://doi.org/10.1039/d1cy00080b

    Article  CAS  Google Scholar 

  28. Xu H, Cai HH, Luo ZK, Ren XZ, Liu JH, Chen P, Zhao FQ, Tian DY (2003) Synthesis and combustion catalysis of nanometer-sized neodymium oxide. Chin J Inorg Chem 19(6):627–630

    CAS  Google Scholar 

  29. Rosid SJM, Toemen S, Abu Bakar WAW, Zamani AH, Mokhtar W (2019) Physicochemical characteristic of neodymium oxide-based catalyst for in-situ CO2/H(2)methanation reaction. J Saudi Chem Soc 23(3):284–293. https://doi.org/10.1016/j.jscs.2018.08.002

    Article  CAS  Google Scholar 

  30. Narasimharao K, Ali TT (2020) leInfluence of synthesis conditions on physico-chemical and photocatalytic properties of rare earth (Ho, Nd and Sm) oxides. J Mater Res Technol Jmr&T 9(2):1819–1830. https://doi.org/10.1016/j.jmrrt.2019:12.014

    Article  CAS  Google Scholar 

  31. Ronduda H, Zybert M, Dziewulska A, Patkowski W, Sobczak K, Ostrowski A, Rarog-Pilecka W (2023) Ammonia synthesis using Co catalysts supported on MgO-Nd2O3 mixed oxide systems: effect of support composition. Surf Interfaces. https://doi.org/10.1016/j.surfin.2022.102530

    Article  Google Scholar 

  32. Patkowski W, Zybert M, Ronduda H, Gawronska G, Albrecht A, Moszynski D, Fidler A, Dluzewski P, Rarog-Pilecka W (2023) The influence of active phase content on properties and activity of Nd2O3-supported cobalt catalysts for ammonia synthesis. Catalysts. https://doi.org/10.3390/catal13020405

    Article  Google Scholar 

  33. van Deelen TW, Hernández Mejía C, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2(11):955–970. https://doi.org/10.1038/s41929-019-0364-x

    Article  CAS  Google Scholar 

  34. Lou Y, Xu J, Zhang Y, Pan C, Dong Y, Zhu Y (2020) Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Mater Today Nano. https://doi.org/10.1016/j.mtnano.2020.100093

    Article  Google Scholar 

  35. Wang X, Li Y (2002) Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem Int Ed 41(24):4790–4793. https://doi.org/10.1002/anie.200290049

    Article  CAS  Google Scholar 

  36. Borodziński A, Bonarowska M (1997) Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 13(21):5613–5620. https://doi.org/10.1021/la962103u

    Article  Google Scholar 

  37. Larichev YV (2008) Valence state study of supported ruthenium Ru/MgO catalysts. J Phys Chem C 112(38):14776–14780. https://doi.org/10.1021/jp803742g

    Article  CAS  Google Scholar 

  38. Wang SJ, Yin SF, Li L, Xu BQ, Ng CF, Au CT (2004) Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Appl Catal B 52(4):287–299. https://doi.org/10.1016/j.apcatb.2004.05.002

    Article  CAS  Google Scholar 

  39. Nagaoka K, Honda K, Ibuki M, Sato K, Takita Y (2010) Highly active Cs2O/Ru/Pr6O11 as a catalyst for ammonia decomposition. Chem Lett 39(9):918–919. https://doi.org/10.1246/cl.2010.918

    Article  CAS  Google Scholar 

  40. Zhao J, Xu S, Wu H, You Z, Deng L, Qiu X (2019) Metal-support interactions on Ru/CaAlOx catalysts derived from structural reconstruction of Ca-Al layered double hydroxides for ammonia decomposition. Chem Commun (Camb) 55(96):14410–14413. https://doi.org/10.1039/c9cc05706d

    Article  CAS  PubMed  Google Scholar 

  41. Hu XC, Wang WW, Si R, Ma C, Jia CJ (2019) Hydrogen production via catalytic decomposition of NH3 using promoted MgO-supported ruthenium catalysts. Sci China Chem 62(12):1625–1633. https://doi.org/10.1007/s11426-019-9578-8

    Article  CAS  Google Scholar 

  42. Ju X, Liu L, Zhang X, Feng J, He T, Chen P (2019) Highly efficient Ru/MgO catalyst with surface-enriched basic sites for production of hydrogen from ammonia decomposition. ChemCatChem 11(16):4161–4170. https://doi.org/10.1002/cctc.201900306

    Article  CAS  Google Scholar 

  43. Cha J, Lee T, Lee Y-J, Jeong H, Jo YS, Kim Y, Nam SW, Han J, Lee KB, Yoon CW, Sohn H (2021) Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.119627

    Article  Google Scholar 

  44. Chin SY, Williams CT, Amiridis MD (2006) FTIR studies of CO adsorption on Al2O3- and SiO2-supported Ru catalysts. J Phys Chem B 110(2):871–882. https://doi.org/10.1021/jp053908q

    Article  CAS  PubMed  Google Scholar 

  45. Peden CHF, Goodman DW, Weisel MD, Hoffmann FM (1991) In situ FT-IRAS study of the co oxidation reaction over ru(001) 1. Evidence for an Eley-Rideal mechanism at high-pressures. Surf Sci 253(1–3):44–58. https://doi.org/10.1016/0039-6028(91)90580-l

    Article  CAS  Google Scholar 

  46. Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A (2007) Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. J Catal 251(1):48–58. https://doi.org/10.1016/j.jcat.2007.07.017

    Article  CAS  Google Scholar 

  47. Chen H-T (2012) First-principles study of CO adsorption and oxidation on Ru-doped CeO2(111) surface. J Phys Chem C 116(10):6239–6246. https://doi.org/10.1021/jp210864m

    Article  CAS  Google Scholar 

  48. Yokomizo GH, Louis C, Bell AT (1989) An infrared study of co adsorption on reduced and oxidized Ru/SiO2. J Catal 120(1):1–14. https://doi.org/10.1016/0021-9517(89)90245-5

    Article  CAS  Google Scholar 

  49. Assmann J, Narkhede V, Khodeir L, Loffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J Phys Chem B 108(38):14634–14642. https://doi.org/10.1021/jp0401675

    Article  CAS  Google Scholar 

  50. Murata S, Aika K (1992) Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia-synthesis. 1. An alumina-supported ruthenium catalyst. J Catal 136(1):110–117. https://doi.org/10.1016/0021-9517(92)90110-4

    Article  CAS  Google Scholar 

  51. Liang CH, Wei ZB, Xin Q, Li C (2001) Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds. Appl Catal A 208(1–2):193–201. https://doi.org/10.1016/s0926-860x(00)00713-4

    Article  CAS  Google Scholar 

  52. Karim AM, Prasad V, Mpourmpakis G, Lonergan WW, Frenkel AI, Chen JGG, Vlachos DG (2009) Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity. J Am Chem Soc 131(34):12230–12239. https://doi.org/10.1021/ja902587k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (2022YFB4002400), the Natural Science Foundation of China (22179128), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021010) and the Liaoning Revitalization Talents Program (XLYC2002076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Liu or Teng He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2668 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, X., Liu, L., He, T. et al. Tuning the Interaction Between Ru Nanoparticles and Nd2O3 to Enhance Hydrogen Formation from Ammonia Decomposition. Top Catal (2024). https://doi.org/10.1007/s11244-024-01926-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01926-8

Keywords

Navigation